
NTNUI Form Management System

TDT4290 Customer Driven Project

Group 6

Jan Burak
Maria Iqbal

Siren Finvik Johansen
Jonathan Linnestad

Erik Liodden
Anders Salvesen

Kristian Bjørn Thoresen

February 11, 2019

Acknowledgements

We would like to thank NTNUI, specifically Even Kallevik and Anders Kirkeby. We would also like to thank
the TDT4290 course staff, especially our supervisor Katerina Mangaroska.

i

Contents

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Project Scope . 1
1.2 Stakeholders . 2
1.3 Report Outline . 2

2 Pre-Study 3
2.1 Organization . 3
2.2 Existing Workflow of the Organization . 4
2.3 Current System - The Member Management System . 4
2.4 Planned Solution - The Form Management System . 4
2.5 Comparison between the Current System and the Planned System 5

3 Requirement Analysis 6
3.1 User Stories . 6
3.2 Functional Requirements . 7
3.3 Non-Functional Requirements . 7
3.4 Changes in Requirements . 8

4 Project Planning 9
4.1 Project Plan Overview . 9
4.2 Team Organization . 10
4.3 Project Schedule . 10
4.4 Communication . 11
4.5 Documents . 12
4.6 Project Work Organization . 12

4.6.1 Integration of Waterfall with other Methodologies . 13
4.6.2 Working Hours . 13
4.6.3 Meetings . 13
4.6.4 Keeping Time . 15

4.7 Quality Assurance . 15
4.7.1 Time of Response . 15
4.7.2 Code Standards . 15
4.7.3 Code Review and Version Control . 15
4.7.4 Templates and Standards . 16
4.7.5 Testing . 16

5 Risk Management 17
5.1 Risk Table Legend . 17
5.2 Risk Table . 18
5.3 Risk Matrix . 18
5.4 Risks encountered during the Development Phase . 19

6 Methodologies 20
6.1 Adopting the Waterfall Methodology . 20
6.2 Waterfall Methodology in the Project . 20
6.3 Adaptions to the Waterfall Methodology . 21
6.4 Technology and Frameworks . 22

ii

7 Tools 24
7.1 Version Control Management . 24
7.2 Communication and Documentation . 24
7.3 Graphics and Figures . 25

8 Architecture and Design 26
8.1 Architectural Drivers . 26
8.2 Architectural and Design Patterns . 26

8.2.1 Model-View-Template (MVT) . 26
8.2.2 State pattern . 26

8.3 Architectural Tactics . 27
8.3.1 Modifiability Tactics . 27
8.3.2 Security Tactics . 27
8.3.3 Usability Tactics . 28

8.4 Entity Relation Model . 28
8.5 The 4+1 Architectural View Model . 29

8.5.1 Architectural Views . 29
8.5.2 Use Cases . 32

9 Security 34
9.1 Security Features in Django . 34
9.2 Abuse Cases . 34
9.3 Static Security Analysis . 34

10 Testing 36
10.1 Unit and Integration Testing . 36
10.2 Automated Functional Testing . 36
10.3 Usability Testing . 37

10.3.1 Test Preparation . 37
10.3.2 Test Subjects . 38
10.3.3 Test Tasks . 39
10.3.4 Test Proceedings . 39
10.3.5 Test Analysis . 40

11 Final Product 41
11.1 User Guide . 41
11.2 Installation Guide . 43

12 Group Reflection and Evaluation 44
12.1 Description of Group Dynamics . 44
12.2 Reflection on Group Dynamics . 44
12.3 Customer Relations . 44
12.4 What Future Students Should Know . 45
12.5 Feedback on the Course . 45

13 Future Work 46
13.1 Modification of Current System . 46
13.2 Improvements of the FMS . 46
13.3 Suggestions for Future Implementation . 47
13.4 Bugs . 47

References 48

iii

A Evolution in Requirements i
A.1 Evolution in user stories . i
A.2 Evolution in functional requirements . i
A.3 Evolution in non-functional requirements . ii

B Testing iii
B.1 User Test Tasks . iii
B.2 User Test Introduction . vi
B.3 User Test In-depth Analysis . vi

C Views vii
C.1 Final product . vii
C.2 Paper prototype . x

C.2.1 Form-owner perspective . xi
C.2.2 Form-signer perspective . xv

D Reports xvii
D.1 Customer feedback . xvii
D.2 Summary customer meetings . xviii
D.3 Important status reports . xxii
D.4 Team contract . xxv
D.5 Gantt Chart . xxix

E Other xxix
E.1 Working Hours . xxix

List of Figures

1 Work Breakdown Structure of the FMS. 11
2 Estimated distribution of working hours spent on various activities. 14
3 Django’s MVT architecture . 27
4 ER-diagram of the FMS . 28
5 Logical View . 29
6 Flow diagram visualizing the flow of the FMS after a user has received a signing notification. 30
7 Sequence diagram visualizing a successful attempt at filling out and signing a form. 30
8 Development view . 31
9 Physical View of the system provided by the customer . 31
10 Static security analysis using Bandit . 35
11 Code Coverage of Unit and Integration Tests . 37
12 Code Coverage of functional testing . 39
13 Leader perspective view that allows the user to send out a form to another user. 41
14 View of form text(a), user information input(b) and password verification(c). 42
15 The default view of the regular user perspective . 43
16 The main page of the system that was implemented by the customer. vii
17 View of the regular user perspective containing received forms that have been signed. viii
18 Leader perspective incoming view . viii
19 Leader perspective view containing outgoing forms that need to be signed by the receiver. . . ix
20 Leader perspective view containing incoming forms that were signed by the current user. . . . ix
21 Leader perspective view containing outgoing forms that were signed by the receiver. x
22 Paper prototype view that shows the first step in the process of sending a form. xi
23 Paper prototype view that shows the second step in the process of sending a form. xi

iv

24 Paper prototype view that shows the third step in the process of sending a form. xii
25 Paper prototype view that shows the fourth step in the process of sending a form. xii
26 Paper prototype view that shows the fifth step in the process of sending a form. xiii
27 Paper prototype view that shows the forms sent and filter functionality. xiii
28 Paper prototype view that shows the active forms. xiv
29 Paper prototype view that shows the approved forms. xiv
30 Paper prototype view that shows the active forms. xv
31 Paper prototype view that shows the first step in the process of filling a form. xv
32 Paper prototype view that shows the signing step in the process of filling a form. xvi
33 Paper prototype view that shows the active forms. The list is empty. xvi
34 Paper prototype view that shows the approved forms. xvii
35 Summary of Gantt Chart . xxix
36 Working Hours per team member per week . xxx
37 Estimated Hours the team spent on the different phases. xxx

List of Tables

1 Stakeholders . 2
2 Development team . 3
3 A selection of the NTNUI committees . 3
4 Comparison between the old and the new system. 5
5 User Stories . 6
6 Functional Requirements . 7
7 Non-functional Requirements . 8
8 Team organization . 10
9 Important project milestones . 11
10 Risk table legend which describes the columns in Table 11. 17
11 Risk table . 18
12 Risk matrix . 19
13 Late deliveries . 19
14 Technologies and frameworks . 22
15 Tools . 24
16 Use Case: U1 . 32
17 Use Case: U2 . 32
18 Use Case: U3 . 33
19 Use Case: U4 . 33
20 Abuse cases for FMS . 35
21 Automated functional test 001 . 36
22 Automated functional test 002 . 38
23 Test schedule as specified by the customer . 38
24 The shortcomings observed during the test and their possible solutions. 40
25 The dates for the changes in user stories . i
26 Evolution of user stories . i
27 Functional requirements version one . ii
28 The dates for the changes in functional requirement version 2 ii
29 Functional requirements version two . iii
30 The dates for the changes in functional Requirements version 3 iii
31 Functional requirements version three . iv
32 The dates for the changes in non-functional requirements . iv
33 Evolution of non-functional requirements . iv

v

Important abbreviations

CSRF - Cross Site Request Forgery

CSS - Cascading Style Sheets

FMS - Form Management System

FR - Functional Requirement

MMS - Member Management System

NFR - Non-Functional Requirement

NTNU - Norges teknisk-naturvitenskapelige universitet (Norwegian University of Science and Technol-
ogy)

NTNUI - Norges teknisk-naturvitenskapelige universitets idrettsforening

SiT - Studentsamskipnaden i Gjøvik, Ålesund og Trondheim

US - User Story

WBS - Work Breakdown Structure

vi

1 Introduction

“Digitization”, or more commonly known as “Digitalization”, has become crucial for every organization.
Nowadays, digital information is considered the most efficient and effective way of creating, saving and
sharing information. From medical data to legal documents, you can find all types of information being
used and shared safely online. In this era of technology, many organizations have digitized their operations.
However, there are still some organizations that do most of their work manually.

NTNUI is Norway’s largest sports organization which has been operated by students since it was founded
in 1910. The organization is still using manual processes and procedures. This is mainly due to insufficient
resources, as NTNUI is a voluntary association. The lack of digitization of their organizational operations
not only consumes a lot of resources, but the organization also falls behind the modern digital trends. The
delay in embracing the novelty has adverse effect on the efficiency and performance of the organization.
However, NTNUI SPRINT took the initiative to digitize their processes and procedures. For this purpose,
NTNUI SPRINT devised an online platform, the Member Management System (MMS), that manages the
members of the organization online. Through this platform, a student can become a member of an associated
sports group without physically visiting the office, as well as share information. The online portal is also
used by board members to manage their operations.

Although the implementation of the MMS is a great start for digitizing NTNUI’s processes and procedures,
there are still some processes that are not yet digitized. Form processing is an important management
activity for NTNUI. Today, the form processes are carried out by using paper forms. The paper forms are
signed by NTNUI members and then stored in archives. Since the current form processes do not scale well
and are tedious work, NTNUI is planning to conduct these processes online. To achieve this objective, the
MMS is to be extended with a Form Management System (FMS). The design and implementation of this
module was assigned to our group as the topic of the Customer Driven Project. The goal of this project is
to develop an FMS where form-owners can instantiate different forms and send them online to form-signers.
When the form-signer receives a form, the form-signer can sign the form online and send it back to NTNUI.
The form-signer will receive an email notification when a new form is available for signing, and the form-
owner receive a notification when a form-signer have signed a form. This report presents the whole process
of developing a prototype of a Form Management System for NTNUI.

1.1 Project Scope

We plan to develop an FMS that will address a subset of the goals NTNUI has defined in its strategy. Hence,
the scope of our project work includes:

1. The development of an abstract form that the rest of the forms will inherit from, and that can be
customized as per the requirement of the form-owner.

2. The abstract form should allow for the digitization of the existing paper forms.

3. The system should allow a form-signer to sign forms.

4. The signed forms should be saved in the database and can be viewed by different users based on
credentials.

5. Notifications should be generated for relevant actors in the form of an email.

6. The system should provide an option for saving and signing a form manually if required.

7. In order to ensure the compatibility with the existing MMS, the FMS will be coded in Django.

8. The System should be tested for the defined functionalities.

1

9. Simple user interface. The interface in the FMS is likely to be changed, as the customer wants a
consistent design. Hence, a simple user interface for the FMS will be developed for testing purposes.

The following functionalities was initially part of the scope, but were later taken out (see Section 3.4).

• Signing of Forms with BankID.

• Access control system regarding roles and access rights.

1.2 Stakeholders

The stakeholders are people or a group of people who may affect, be affected by, or perceive themselves to be
affected by a decision, activity, or outcome of the project [1]. Stakeholders are all individuals who in some
way or another contribute to the success or failure of the project [2].

The identified stakeholders of the following project are shown in Table 1. A list of the group members and
their study program is shown in Table 2.

Stakeholders Description, interest and influence
Development
Team

The development team includes seven students that are currently enrolled at NTNU.
All members of the team are equipped with knowledge of software development pro-
cesses and procedures, and are skilled in different fields like web development, appli-
cation development, software testing and software project management. The team
will need to learn Django in order to successfully finish the project. The project will
give hands-on experience to all team members regarding the development of a system
with real life customers. The team will deliver a fully functional prototype.

Customer The customer is NTNUI. In order to enhance the efficiency and performance of their
organization, they need to reduce tedious manual work. NTNUI opted for digitization
of their manual processes. The initiation of the following project is a part of NTNUI’s
digitization strategy.

Supervisor The teams’s supervisor is a key stakeholder who has a large interest in the project
along with crucial influence. The supervisor also monitors the progress of the project
and ensures its quality.

Department
of Computer
Science

The Department of Computer Science is a stakeholder with a large interest in the
project but marginal influence. The project is completed as a part of the coursework
of TDT4290 Customer Driven Project offered by the department.

End User The end users of the project are the members of NTNUI who will use the system
for accessing and signing forms digitally. These members include board members of
NTNUI with greater privileges. The end users’ interest is to adopt an effective system
that simplifies common organizational processes.

Table 1: Stakeholders

1.3 Report Outline

The report is formulated to document all the processes used for the completion of the Customer Driven
Software Project assigned to our group. Sections 1 and 2 include details regarding the introduction of the
project and the customer along with the pre-study that is done to develop a complete understanding of
the project. Section 3 documents the requirement analysis, which lays the groundwork for project planning
in Section 4. In Section 5, the risk management plan, details regarding identified risks, and the plan for
mitigating these risk are stated. Section 6 and 7 explain how the group implemented the system and the

2

Student Name Program of Study
Jonathan Linnestad MTDT Computer Science - Databases & Search
Siren Finvik Johansen MTDT Computer Science - Interaction Design & Game Technology
Kristian Bjørn Thoresen MTDT Computer Science - Artificial Intelligence
Erik Liodden MTDT Computer Science - Artificial Intelligence
Jan Burak MTDT Computer Science - Artificial Intelligence
Anders Salvesen MTDT Computer Science - Software Engineering
Maria Iqbal MSINFOSYST Information Systems

Table 2: Development team

usage of methodologies, technologies, frameworks and tools. The overview of the architecture and the design
of the system are stated in Section 8 of the report. In Section 9 the security aspect of the project is discussed
and in Section 10 the details regarding execution of testing plan are documented. Section 11 describes the
final product, including details for the system installation and use. Section 12 is the group reflection which
includes details of the group dynamics. Section 13 offer a glimpse of the prospect of the developed system
and give suggestions for future work.

2 Pre-Study

2.1 Organization

NTNUI is the sports association of the Norwegian University of Science and Technology (NTNU) and has
existed for more than 100 years. Unlike many other sports organizations, NTNUI is operated by students.
NTNUI is Norway’s largest and most diverse sports association, with more than 13 000 members. NTNUI
organizes sports events and other activities through its sports groups. These groups offer a wide range of
over 70 sports, for instance: football, cycling, sailing, swimming, rugby, ice-hockey [3].

Organizational Structure
The main board of the organization consists of a President, Deputy, Manager of Finance, Main Treasurer,
Manager of Information and contact for the student games, Material Responsible, Event Manager, Secretary
and Leader of Baneutvalget, Head of HR and open practices, PR- and Sponsor responsible and Chief editor
for Klubbavisa. Along with these board members, the organization also has committees working for various
purposes. A selection of these committees is shown in Table 3.

Name of the Committee Purpose
Bumerang Lending sports equipment for free to all students
The Student Games Responsible for organizing the biggest student sports festival in Trond-

heim
Hyttestyret Responsible for managing and maintaining Studenterhytta
Treningsløftet A cooperation between NTNUI, NTNU, SiT and The Student Welfare

Association aiming to improve the fitness of students
Koiegruppa Maintains and manages 23 ”Koier” all around Trønderlag
NTNUI SPRINT Works with software development in cooperation with the groups.

Table 3: A selection of the NTNUI committees

Along with these committees, the organization has about 61 groups offering training and organizing compe-
titions for a wide range of sports [4]. These groups are usually divided into subgroups, each one for a specific

3

degree of skill, e.g. ”Rowing - Beginner”, ”Rowing - Intermediate” and ”Rowing - Advanced”.

Becoming a Member
Any student at NTNU can become a member of NTNUI by going to the reception of a SiT sports center.
However, if a student needs to join a group that uses one of SiT’s sports centers, they have to acquire a SiT
membership as well. Once a person is a member of NTNUI, the person is able to join a NTNUI group. The
processes of joining a group and becoming a board member are done manually. The SPRINT committee is
working on developing a platform that enables carrying out these processes online.

2.2 Existing Workflow of the Organization

At NTNUI, most processes and procedures are carried out manually. From a management perspective, these
procedures require a lot of time. There are several reasons why the organization lags behind in adopting
digital technologies:

• Availability of funds

• Lack of resources for in-house development of a management system.

• Regularization of processes and procedures for management tasks.

Some of the most important organizational processes include:

• Becoming a member of a sports group: To become member of a sports group, students have to visit
one of SiT’s sports centers and submit a request using a paper form.

• Request forms: To place a request for various purposes, e.g. issuance of equipment or to release funds
from a sports group, students have to sign a paper form that is available at the sports center.

• Signing and storing forms: All forms are paper based and need to be signed either by group members
or board members. The signed forms are stored physically.

• Changing roles and access rights using signed forms: Forms are used by board members to change the
board structure or to alter a member’s access rights.

2.3 Current System - The Member Management System

NTNUI SPRINT is currently working on the MMS. The users of the MMS can log into the system as regular
users or administrators. The MMS allows users to view and join groups, view events, and access details
regarding groups and group members. The administrators have exclusive access to an admin panel that
allows them to administrate the database. The system is developed in Django and uses HTTP requests
to GET, POST, DELETE and PUT data. The MMS includes a database architecture that support the
aforementioned functionality.

2.4 Planned Solution - The Form Management System

The planned solution will extend the current MMS with a FMS. The FMS will be accessible through the
”Members portal” after the authentication of the user according to the access rights granted by the organi-
zation.

The two main categories of users are:

4

User: Form-Owner
After logging in to the system, the user will be able to:

1. Instantiate a form.

2. Assign a signer to the form.

3. The system will notify the form-signer.

4. View the status of instantiated forms

User: Form-Signer
After logged in to the system, the user will be able to:

1. receive a notification, through email, when a new form is available for signing.

2. Sign a form with password.

3. The system will notify the form-owner when the form is signed.

The Flow diagram visualizing these functionalities is shown in Figure 6.

Learning Requirement for the Planned Solution
The MMS is built using the Django framework, so the planned solution needs to also be implemented in
Django. To accomplish this, the project team had to acquaint itself with the framework. The team was
already familiar with Python, which Django is based on. This shortened the time required for acquiring
the competence necessary for the project. The team learned to work with the Django framework using the
official tutorial [5].

2.5 Comparison between the Current System and the Planned System

Table 4 shows a comparison between the current processes regarding form management and the execution
of these processes using the FMS.

Existing workflow of NTNUI Workflow integrated with FMS
A board member (form-owner) has to contact
the relevant users (form-signers) when a user
has to sign a form. The user has to meet the
board member to sign the form and ask for a
copy if it is desired.

The form-owner can instantiate a form and the system will
notify the chosen form-signer by email. The form-signer
can then sign the form online. The form will be saved in
the database and the form-signer can view the form when
desired.

NTNUI has to manage a wide range of forms,
which requires printing and physical storage.

Through the FMS all the forms will be saved digitally, elim-
inating the requirement for space and physical resources.

Retrieval of signed forms requires time and re-
sources

Signed forms stored in the FMS can be viewed online by
authorized members, saving time and resources.

To check the status of forms, signed or un-
signed, requires a lot of time and resources

The status of the forms can be easily checked in the FMS.
Relevant users will be notified when a new form is available
for signing or when a form has been signed.

Table 4: Comparison between the old and the new system.

5

3 Requirement Analysis

3.1 User Stories

The user stories were created by the development team after several meetings with the customer. The user
stories are defined in Table 5. Their purpose was to understand the customer’s needs and for the customer to
see whether the team understood the customer’s vision. The user stories were used to create the functional
requirements, see Section 3.2, which were used to develop the system.

ID User stories Acceptance criteria
US1 As a form-signer, I should be able to fill out a

form in Norwegian.
Given a user is logged in, when the user requests a form,
the form should be returned in Norwegian.

US2 As a form-owner, I can require that a form
needs external approval to be completed.

The system allows form-owner to choose external approves
if it is required by the form.

US3 As a user with appropriate privileges, I should
be able to see both signed and unsigned forms.

A user can see forms they have initiated themselves. Not
others, even with appropriate privileges.

US4 As a form-owner with form instantiation priv-
ileges, I should be able to instantiate a form
.

Given that a user is on the ”send skjema” page, the system
allows the user to instantiate a form.

US5 As a form-owner, I should be able to create a
new form.

Given a form-owner with the right privileges, the system
should allow the form-owner to create a new form and add
it to the database.

US6 As a form-owner, I should be able to make a
form available for signing for relevant form-
signer.

Given that a form-owner is the president of a group, the
system allows the form-owner to choose a form for signing
and a form-signer to sign the form.

US7 As a form-owner, I should be able to see all
my instantiated forms and their status.

Given that a form-owner has sent out forms, the system
allows the form-owner to view all the form that they own
and their status.

US9 As a form-signer, I should be able to view and
fill out content in a form.

Given a form-signer has received a form, the system allows
the form-signer fill out content in the form.

US10 As a form-signer, I should be notified when a
form is available to be signed.

Given that a form-owner has sent out a form, the system
should notify a form-signer when a new form is available
for signing.

US11 As a form-owner, I should be notified upon
form completion.

Given that a form-owner has sent out forms, the system
should notify the form-owner upon form completion.

US12 As a form-signer, I should be able to sign a
form using my password when required.

Given that a form-signer has a form to sign, the system
should allow a user to sign a form with their password if it
is required by the form.

US13 As a form-signer, I should be able to sign a
form using BankID when required.

Given that a form-signer has a form to sign, the system
should allow a user to sign a form with BankID if the form
require higher order signing.

US14 As a form-signer, my access-rights to the sys-
tem should change upon the completion of
specific forms.

The system should change a form-signers access rights if it
is specified in the form.

Table 5: User Stories

User stories US2, US5, US13 and US14 were taken out of scope, so they are not linked to functional
requirements. This is because they were not prioritized by the customer and that their implementation
would require too much time, given the team’s time constraints. However, the team kept the customer
vision in mind in order to develop a modular system that can be expanded in the future to include these
user stories. US8 has been removed altogether from Table 5 due to being covered by the modified version of
US7. See Appendix A.1 for details.

Due to the customer’s technical competence, the team used the functional requirements instead of the user

6

stories to determine when the project was complete and to measure progress. This was approved by the
customer (see Appendix D.1).

3.2 Functional Requirements

The final version of the functional requirements are shown in the Table 6 and are sorted by priority. The
customer prioritized the requirements from low to high. This was so that the team knew in which order the
customer wanted the functional requirements implemented. The functional requirements were created based
on the user stories in Table 5. FR3 was replaced by FR13, and FR9 was removed as explained in Section
3.4.

After impediments caused by the customer during the development phase, see Risk ID 2 in Section 5.4,
the customer decided that all functional requirements with a low priority should be considered future work.
However, these requirements were also implemented, because the team had time to complete these require-
ments.

All the functional requirements are considered done by the customer, see Appendix D.1 for customer feed-
back.

ID Functional Requirements Priority User stories Done
FR1 The system should contain a modular abstract form that

can be inherited by other forms.
High - Yes

FR2 The system should save signed forms in the database. High - Yes
FR13 Presidents/Leaders in a group should be able to instantiate

forms to be signed by members in that group.
High US4 Yes

FR4 The system should contain functionality to sign forms using
password.

Medium US12 Yes

FR5 The form-owner can specify form-signers of a particular
form.

Medium US6 Yes

FR6 The form-owner should be able to view all the forms they
have instantiated and the status of these forms.

Medium US7, US3 Yes

FR7 Upon signing a form, the system should notify the form-
owner(s) as defined by the form’s notification policy.

Medium US11 Yes

FR8 The forms can be customized for higher order authentica-
tion.

Low - Yes

FR10 Upon receiving a sign-request, the system should present
the form to form-signer along with the ability to sign the
form.

Low US9, US12 Yes

FR11 The system should be able to notify actors on form instan-
tiation if specified in the form’s notification policy.

Low US10 Yes

FR12 The system should contain a general “Team contract”-form
(Team kontrakt) in the database.

Low - Yes

Table 6: Functional Requirements. All functional requirements are considered as done and completed by
the customer as of 23-Oct-2018. See Appendix D.

3.3 Non-Functional Requirements

Non-functional requirements are shown in Table 7. The non-functional requirements were created in collab-
oration with the customer.

7

ID Non-functional requirement Done
NFR1 The system must be written as a Django-app. (Django 2.1) Yes
NFR2 The code should have one or two integration tests and pass every test. Yes
NFR3 The system should be user tested. Yes
NFR4 The code should be documented, both in code and at GitHub wiki. Yes
NFR5 The system should be available in Norwegian Yes
NFR6 UIKit should be the main CSS-library for styling. Yes
NFR7 All forms should use a Cross-Site Request Forgery (CSRF) token. Yes

Table 7: Non-Functional Requirements. All non-functional requirements were considered done by the cus-
tomer as of 23-Oct-2018. See Appendix D.

3.4 Changes in Requirements

The functional and non-functional requirements evolved throughout the project. The changes were due to
the customer reprioritizing and removing some requirements, see Appendix A for details about the evolution
of requirements.

We initially planned to implement the ability to sign a form with a higher level of authentication using
BankID, see user story US13 in Table 5. The customer realized that they did not need BankID as much as
they initially thought, and thus the requirement was taken out of scope. The system contains the ability to
specify that a form requires higher order type of signing (see FR8 in Table 6) such as BankID or a paper
signature. The FMS prevents a user from signing a form using their password (a low-level type of signature)
if the form requires a higher order type of signing. However, the implementation of the high-level type of
signature is considered future work, see Section 13.

The customer had a limited access control system, and the functional requirements regarding changes in
access rights were considered out of scope and removed. After discussion with the customer, FR3 was
agreed to be outside the scope and was replaced by FR13. FR9 was removed completely (see Table 31 in
Appendix).

8

4 Project Planning

This section includes details of the overall plan that will be used in the project. The devised plan is based on
the requirements defined by the customer. The main objective of this project plan is to control the project
execution and to define the approach for the development of the software.

The people who will refer to this plan are:

• Project Manager / Team Leader : To plan the project schedule and resource needs, and to track the
progress against the schedule.

• Project Team: To have a reference for what they need to do and when they need to do it, and to see
if there are any dependencies among the activities.

This project plan contains the following information:

• Overview of the project plan: Provides a description of the project’s purpose, scope, and objectives. It
also defines the deliverables of the project.

• Team Organization: Describes the organizational structure of the project team.

• Management processes: Estimates the schedule, defines the major phases and milestones for the project,
documents, and tools used for communication.

• Applicable Plans and Guidelines: Provides an overview of the software development process, including
methods, tools and techniques to be followed, along with details regarding the quality assurance plan.

4.1 Project Plan Overview

The project plan was initiated at the start of the project after the first meeting with the customer. The
customer introduced the existing system and defined requirements for future development.

The important phases in the project are as follows:

Pre-Study and Planning Phase
This phase of the project commences as soon as the scope of the project is defined. This was done in
collaboration with the customer. One of the main customer requirements was for the system to be devel-
oped in Django. Therefore, the team has allocated time for a learning phase to become familiar with the
framework.

Extensive time was allocated to the planning phase. The customer requirements were refined during this
phase, and a thorough understanding of the existing system was developed. For this purpose, meetings
were organized where the customer was requested to demonstrate the existing code. After the customer
requirements were finalized, the system was designed, and a plan was devised for the implementation and
testing phases.

Implementation Phase
The implementation phase will be initiated as soon as the major system requirements are finalized. The
process begins with the development of the AbstractForm, which is a major functional requirement defined
by the customer, see Section 3.2. This phase includes the development of the user interface and functionalities
such as notifications and signing of forms using password authentication.

Testing Phase
The testing phase of the project comprises of user testing, unit testing and integration testing. The FMS
developed in the implementation phase will be tested against the requirements. The results are documented
in Section 10.

9

Presentation Phase
This phase of the project initiates one week before the deadline of the project. In this phase, the project
presentation and the video will be prepared for the final examination.

4.2 Team Organization

The team organization structure is shown in Table 8.

Roles Team Members Responsibilities
Team Leader/
Project Manager

Siren Finvik Johansen 1. Planning and coordinating team activities.
2. Providing feedback about team progress to the
supervisor.
3. Motivating team members.
4. Sharing internal reviews of the items made by the
team.

Quality Manager Jan Burak 1. Ensure the quality of the end product and the
overall process.
2. Check that all project documents are consistent
3. Arrange internal and external reviews.
4. Monitor and review all testing activities.

Product Owner/
Customer

NTNUI 1. Define all of the requirements. Check that the
requirements are met.
2. Ensure that resources required for the develop-
ment are provided.

Test Manager Jonathan Linnestad 1. Ensure that the system is sufficiently tested ac-
cording to the non-functional requirement.
2. Perform frequent regression testing

Development Team
Members

Jonathan Linnestad
Siren Finvik Johansen
Erik Liodden
Jan Burak
Anders Salvesen
Maria Iqbal
Kristian Bjørn Thoresen

1. Assisting the Team Leader by signaling problems
in an early stage.
2. Executing plans made by the Team Leader.
3. Keeping track of the time spent on various tasks.
4. Following procedures and plans.

Table 8: Team organization

4.3 Project Schedule

A project schedule is devised using scheduling tools like the Work Breakdown Structure (WBS) and a Gantt
Chart. The important milestones of the project are identified, and for ensuring the milestones are reached,
the WBS approach is used.

Milestones Plan
Milestones planning is used to identify the important milestones in a project and does not include any
detailed description of how the results will be achieved. This is result oriented planning rather than activity
oriented planning[2].

The important milestones for the project are shown in Table 9.

10

Sr.No Milestones Important Dates
1. Project Kick off and Task Assignment August 28, 2018
2. Finalization of requirements September 18, 2018
3. Setup code base (Abstract form) October 2, 2018
4. Mid Project Feedback October 9, 2018
5. Implementation of all functionalities October 23, 2018
6. Testing November 01, 2018
7. Last Report Draft November 14, 2018
8. Presentation November 22, 2018

Table 9: Important project milestones

Work Breakdown Structure (WBS)
WBS is used to break down the project into small autonomous, controllable tasks with minimal depen-
dency between them. The WBS exhibits important milestones of the project, along with the details of the
deliverables and the work packages. The WBS is shown in Figure 1.

Forms Management
System

Requirement Analysis
(1.0)

User Stories(1.1)

Functional
Requirements(1.1.1)

Non-Functional
Requirements(1.1.2)

Planning(2.0)

Schedule(2.1) Communication (2.2)

Meetings(2.2.1)

Development(3.0)

Abstract Form
/Coach Form (3.1)

User Interface /
Present View (3.2)

Password Signing
(3.3)

Adding Actions/
Notifications (3.4)

Testing(4.0)

Functional Testing
(4.1)

Unit Testing (4.2)

Integration Testing
(4.3)

Figure 1: Work Breakdown Structure of the FMS.

Gantt Chart
For further details regarding the project schedule, the Gantt Chart has been used. The Gantt Chart includes
tasks to be performed for the project and the duration required for the completion of the tasks. The Gantt
Chart is attached in Appendix D.5.

4.4 Communication

Effective communication is the key for success in every project. As agreed with the customer, the team will
use the following modes of communication to avoid any delays or uncertainty:

11

Customer meetings
Weekly meetings with the customer are organized in which the scope of the project was defined. The customer
will be updated on the development’s progress and regular feedback was received from the customer.

Weekly team meetings
The team will organize weekly team meetings, usually on Tuesday and Thursdays, in which the overall
progress will be discussed along with the individual work progress.

Status Meetings
Status meetings are held with the supervisor in which the supervisor is updated on the development and
report progress.

Slack and Asana
Slack and Asana are team collaboration tools suggested by the customer for the communication between the
team and the customer. Both platforms are used for messaging, file sharing and planning.

Facebook Messenger
Facebook Messenger is also used during the project for internal communication among the team members.
The team members uses messenger for the communication of internal queries, meeting times and other
relevant information.

Google Team Drive
Google Team Drive is another important cloud platform that is used by the team and the customer for
online sharing of documents. Google Drive is also used to keep track of all meetings notes, schedules and a
repository for documents related to the project.

4.5 Documents

As a result of software project management and web application development, the following documents are
created:

• Source Code

• Project Report

• Minutes of Meetings

• Data Flow Diagram

• Requirement Specification Document

• User Stories and other relevant documents

Most of the documents are available to the team on Google Team Drive for ease of access and security.
Documents are also visible to the customer and the supervisor. The source code of the project is saved on
GitHub. For project report writing and saving, Overleaf is used.

4.6 Project Work Organization

For the organization of the project work, the Waterfall methodology was adopted as the requirements
of the project work were defined by the customer. However, Agile Methodology was incorporated into
the requirement analysis phase to accommodate changes in the functional requirements. Along with this,
different methods were used to ensure progress and for monitoring and control purposes. These methods
include allocation of working hours, keeping time, and regular meetings that can help to oversee the progress
of the project.

12

4.6.1 Integration of Waterfall with other Methodologies

As per the Waterfall model, the project plan focuses on the logical progression of the processes defined
for Software Development Life Cycle[6]. This sequential and straightforward model includes step-by-step
methods for the completion of the project. The phases to be used for the development of the FMS are as
follows:

• Requirements Gathering : This phase involves the identification of user requirements through user
stories. This process is initiated at the first meeting with the customer. However, due to the continuous
refinement of the requirements, the process is kept agile.

• Analysis and Design: This phase includes analyzing and identifying the technical requirements. The
development is based on the blueprints devised in this process in the form of an ER diagram and a
class Diagram.

• Implementation / Coding : The actual development of the system usually takes place in this phase.
Since the team will learn a new framework, pair programming techniques are intended to be integrated
in this phase.

• Testing : Testing is an important Waterfall process which validates and verifies the developed system
against the defined requirements and ensures quality.

4.6.2 Working Hours

There are a total of 7 members in the team, and according to the compendium [7], a team of 6-8 people
should be spending 24 hours each per week on the project. However, in the initial phase, the team will
allocate 16-18 hours per week for the customer meetings, team meetings, and meetings with the supervisor.
Due to the requirement that the system should be developed in Django, time will also be spent on learning
the framework.

Initially, the working hours per person were low due to:

• Uncertainty in requirements

• Delay in documentation and resources required from the customer

To accommodate this, the team members contributed more during the later phases of the project. The time
spent on the various activities is shown in Figure 2. Raw data can be found in Appendix E.1.

4.6.3 Meetings

To monitor the progress and ensure the execution of the plan, regular meetings will be scheduled throughout
the project. These meetings include:

Customer Meetings
Meetings with the customer are scheduled on every Tuesday throughout the project. Two to three hours
have been allocated to these meetings. The most important meeting minutes are available in Appendix D.
The purpose of these meetings is to:

• To define the requirements in a clear and concise way.

• To identify customer resources that are needed by the team.

• To understand the system and the database architecture used at the customer end.

• To verify and validate the project requirements.

13

30 %

11 %

13 %

27 %

5 %

14 %

Relative Working Hours

Report Writing Analysis and Design Requirement Gathering

Development Testing Learning Django

Figure 2: Estimated distribution of working hours spent on various activities.

Team Meetings / Status Meetings
Team meetings are organized on a regular basis to monitor and control the project progress. These meetings
will be scheduled on every Thursday. The main objectives of these meetings are:

• Discussing the project status

• Presenting the individual work progress

• Discussion of the technology to be used

• Prioritization of tasks

• Feedback on tasks completed or to be completed

• Discussion of the agenda for the next customer meeting

• Assignment of tasks for the next week

• Status report for each week (These reports are available for the customer on Google Drive)

Meetings with the Supervisor
For meetings with the supervisor, a request should be sent a few days in advance. The meetings with the
supervisor may include discussions of:

• Relations with the customer

• Feedback on the progress

• Clarification of course requirements

• Feedback on the project report

• Recommendations for future work

Team Leader Meetings
The team leader meetings are organized by the department almost every two weeks. The details regarding
these meetings and the minutes of meetings should be available to all team members on Google Drive.

14

4.6.4 Keeping Time

For tracking working hours of the team members, a spreadsheet is used and maintained in Google Drive by
the team leader. The objective of tracking time is to ensure that all group members are working on the
project and devote sufficient time for the completion of tasks. The spreadsheet can be found in Appendix
E.1.

It is not possible to avoid every hazard that can result in the loss of working hours. However, to cope with
such situations, it was decided that in case a team member was not able to attend a meeting or could not
work for certain hours, they have to take responsibility for making up the missing time. It is mandatory for
team members to inform the team leader in such scenarios. Also, it should be made feasible for all team
members to access the documentation, minutes of meetings or relevant material remotely, so that they are
able to work or keep themselves updated.

4.7 Quality Assurance

These sections include the details of the quality assurance procedures the team plan to perform during the
project, and how these processes will be implemented.

4.7.1 Time of Response

The customer has agreed to respond to queries through Slack and Asana within 24 hours. However, regular
meetings with the customer are also held on a weekly basis to resolve issues without delays. The customer
agreed to respond for:

• Approval for functional requirements – 24 hours

• Approval for prioritization of the requirements to initiate development – 24 hours

• Answer questions through Asana / Slack – 24 hours

• Providing required resources – 1 week

• Providing a test server – at the start of the project, however, it was not required for the project.

4.7.2 Code Standards

Since the FMS has to be integrated with the existing MMS, ”Best Practices” will be used. The customers
existing code has also been used as reference. It is important that the code can function as a basis for future
development. For this purpose, common design and code conventions, which ensure consistency in the code,
will be used. Comments should be added for improved readability of the source code and for future reference.
Along with this, pair programming and peer reviews will be used during the development.

4.7.3 Code Review and Version Control

Code review is a process that is required for quality assurance purposes. With code reviews and version
control, the team ensures that the source code and the documentation are following the standards required
by the customer.

An internal/external approval approach will be adopted, along with the peer review method. Small atomic
tasks will be allocated among the team and each task developed, reviewed and then added to the main git
branch. This approach reduces potential problems that could arise during development. The reviews should

15

be made with an explanation, comments and annotations for future reference. Peer review is done through
GitHub.

4.7.4 Templates and Standards

For templates and standards of documentation, the standard predefined templates are mostly used. For the
report writing and other documentation, the conventions defined in the Compendium are being followed.
However, for internal documentation like that of Minutes of Meetings, Weekly Status Reports, Requirement
Tracking different templates are used that are already defined.

For the organization of files, Google Drive will be used as the main repository. For communication with the
customer, Slack and Asana are used.

4.7.5 Testing

Testing is an essential part of Quality Assurance that not only ensures the quality of the product but also
validates its usability. Even though the customer did not insist on extensive testing of the product, the
project team has devised a testing plan for the validation and verification of the functional requirements
defined in Section 3.

The testing practices used by the team are further described in Section 10.

Manual Testing

• Usability Testing / Functional testing : For user testing, the system should be tested for all the require-
ments defined in Section 3.2 and 3.3. It is a form of black-box testing, as it does not concern itself
with the actual code, but focuses on functionality. It should be carried out after the implementation
of the requirements to verify that the system works as intended and is user friendly.

Automated Testing:

• Automated Functional Testing, black box : Simulates a user flow and ensures that every step results in
the expected output. It concerns itself on testing from a user perspective and not the code itself, as
such it is a form of black-box testing. It will be based on the use cases defined in Section 8.5.2. It
should be implemented on requirement completion, before pushing to production.

• Unit and Integration Testing, white box : In the unit tests, individual modules of the system are tested
for associated functionalities. Integration tests consist of testing different modules against each other.
They test the code itself, and as such are a form of white-box testing. They should be implemented
while coding and should run before each pull-request.

16

5 Risk Management

This section will identify the different risks that may arise while working on the project and provide an
analysis of the different risks. By doing proper risk management, the team will be prepared for handling
potential risk impediments.

5.1 Risk Table Legend

Table 10 describes the meaning of each column in Table 11. The reason the team chose this format for
the risk table is that this format was the one proposed in the compendium for TDT4290 Customer Driven
Project [7].

Table column Description
ID A number used to identify different risks
Activity Which of the activities of the project are affected
Risk factor The name of the risk factor
Consequence The impediments that a risk factor will cause. The impediments is categorized

by the degree of impact they have on the project:
• H (High impact) - The impediment will cause great damage to the project
• M (Medium impact) - The impediment will do some damage to the

project
• L (Low impact) - The impediment will do little damage to the project

Prob. (Probability) The probability that the risk impediment will occur. The probabilities will be
divided into:

• H (High probability) - The risk will most likely occur
• M (Medium probability) - Equal chance the risk occurs or not occurs
• L (Low probability) - The risk will most likely not occur

Strategy and actions The strategies and actions the group can do in order to prevent the risk im-
pediment to occur. The strategies are divided into:

• Avoid - Change plans to avoid the problem
• Transfer - Transfer risk management to another party
• Reduce - Reduce likelihood of risk impediment by defining preventive

actions
• Accept - Accept the risk and do nothing about possible impediments

Deadline The deadline says in what project phase the risk impediment may occur. Ab-
breviations used:

• Cont. - Continuously
• Dev. - Development

Resp. (Responsible) The person or group responsible for preventing and handling risk impediment

Table 10: Risk table legend which describes the columns in Table 11.

17

5.2 Risk Table

Table 11 identifies the risks, the consequence of them happening, the probability for them to happen, what
to do to prevent the risk from happening, in which phase the risk can happen and who is responsible to
prevent the risk. A description of the meaning of each column is shown in Table 10.

ID Activity Risk factor Consequence Prob. Strategy and actions Deadline Resp.

1 All Group member arrives late
to the group working ses-
sion

M: The quality of the
project results will de-
crease

H Reduce: Define in the team contract
penalties for arriving late.

Cont. All

2 All The existing system does
not provide sufficient
functionality to fulfill the
requirements within time
and skill boundaries

H: The group will have to
do work that is not defined
in scope and this will make
the original scope unfeasi-
ble

L Reduce: When discussing the scope
of the project with the customer, ask
the customer clearly if the existing sys-
tem provides everything needed to im-
plement the requirements agreed upon.
Transfer: This impediment should
be handled by the customer, any fea-
ture requirements dependant on non-
existing functionality from the existing
system should be removed.

Dev. All

3 All Late deliveries from the
customer

H: The group will be
blocked by the customer
and person-hours will be
lost

H Reduce: Have a good dialogue with
the customer throughout the project
and send reminders when due date is
approaching.
Transfer: This impediment should
be handled by the customer, any fea-
ture requirements dependant on non-
existing functionality from the existing
system should be removed.

Cont. All

4 Dev. Customer demands more
features

L: The feature requests
will be rejected

H Reduce: Be clear in the planning
phase with the customer that the scope
agreed upon is not expandable.

Cont. Group
leader

5 All Data loss H: Loss of person-hours
and the group members
will need to redo the work

M Reduce: Make sure all data produced
by the group is uploaded and backed
up in the cloud (e.g. Github, Overleaf,
Google Drive etc.) as often as possible.

Cont. All

6 All Redundant work H: Loss of person-hours
and the involved group
members will need to sort
out which version to use

L Reduce: Make sure the tasks are
clearly defined and that group mem-
bers update the other group mem-
bers when a task’s status has changed.
There should also be Weekly stand-ups
where each group member talks about
their progress since last the stand-up
meeting, this is done to discover redun-
dant work early.

Cont. All

7 All Group member is sick L: Loss of person-hours M Accept: Everybody gets sick once in
a while.

Cont. All

8 All Group member has to learn
new frameworks or tools

M: Loss of person-hours M Transfer: If the customer wants the
developers to use frameworks or tools
that they are unfamiliar with the cus-
tomer has to take into account that the
developers have to use time on learning
the unfamiliar frameworks and tools.

Cont. All

Table 11: Risk table. The risk table describes different aspects of each risk. A description of the columns
can be found in Table 10.

5.3 Risk Matrix

The risks described in Table 11 are categorized in a risk matrix in Table 12.

18

Frequency/Consequence Very Unlikely Remote Occasional Probable Frequent
Catastrophic 2

Critical 3, 5
Major 6 8
Minor 1, 7 4

Table 12: Risk matrix that relates a risk to its probable frequency and consequence. Green, yellow and red
corresponds to low, medium and high severity respectively. The numbers in the risk matrix refers to the
risks IDs in Table 11.

5.4 Risks encountered during the Development Phase

No matter how much one tries to prevent risk impediments, they still occur to some degree. The risk
impediments the team encountered had big consequences for the project and are discussed in more detail
below.

Risk (ID 2): ”The existing system does not provide sufficient functionality to fulfill the requirements within
time and skill boundaries”. Initially the team was to implement a feature, see Appendix A, that changed
user’s privileges when a user signs certain types of forms. E.g. a regular member that has signed a coach form
should be granted rights for sending a form to another member. In order to implement this functionality
we were dependent on a proper access control system in the existing system. The existing system contained
an access control system to some degree, but it was not implemented sufficiently for the sake of the project.
This resulted in that the functional requirements that require a proper access control system would not be
possible to implement. Since creating a proper access control system was not a part of the project scope,
we did not consider implementing it. The customer acknowledged that the existing access control system
was inadequate for implementing FR3 and FR9 (see Table 31 in Appendix). Therefore, the customer agreed
to remove these functional requirements from the scope. Although implementing a proper access control
system was not a part of the project scope, thoughts on how a potential implementation would look like are
presented in Section 13.

Risk (ID 3): ”Late deliveries from the customer”. During the planning and development phase the customer
failed several times to provide the promised deliverables on time. Table 13 highlights the late deliveries and
the consequence of them. After multiple late deliverables from the customer, the customer decided that all
functional requirements with a priority low will be considered as ”future work”.

Late deliverable Consequence
Fork of customer’s
GitHub repository

In a customer meeting we requested that they would create a fork
immediately.

Test server The team agreed with the customer that they would provide mock
data users instead of a test server.

Access to forms The forms implemented are ”example forms”, and need to be modified
by the customer

Mock data Limited mock data was created by the team.

Table 13: Late deliveries

Risk (ID 6): ”Redundant work”. The team experienced some redundant work during the learning phase.
To make the Django learning process more useful, some group members started to implement parts of the
system as a way to learn Django. Some of the code created by the different group members during this phase
was decided to be part of the FMS. The overlapping code had to be merged, but this was done very quickly
as the amount of overlapping code was not extensive. Since this happened in the learning phase, it did not
have a big impact on the project progress. Redundant work occurred only in the learning phase. During

19

development, we defined the tasks clearly. Redundant work during this phase was not a problem.

6 Methodologies

This section will discuss the different software and development methodologies used in the project.

6.1 Adopting the Waterfall Methodology

After the initial meetings with the customer, the team decided to use the Waterfall methodology for the
development of this project. This methodology suits the project best for the following reasons:

Defined Structured Organization
All the aspects of the project, which include requirements (Section 3), modes of communication, development
mode and testing requirements (Section 6.4 and Section 7), were defined by the customer at the beginning
of the project. In order to comply with the customer requirements, the team chose to follow a disciplined
approach of Waterfall methodology. The orderly processes of the methodology include design, development,
testing and implementation.

Possibility to Integrate Changes at Earlier Stages
The Waterfall methodology allows incorporating changes at earlier stages during the design process. This
was important for the project as there were some uncertainties in the customer requirements. Due to
changes in the requirements with the passage of time, the design of the project evolved. The record of the
requirements’ changes can be viewed in Appendix A. The team and the customer had several meetings to
finalize the requirements, especially for using an API for BankID and for defining the scope of the project
given the system available at their end.

Definite and limited scope of the project
The FMS the team developed has to be integrated with the existing MMS which is still under development.
Therefore, the scope of the project was limited from the start. It also meant that the customer had definite
requirements regarding development. These requirements included using the Django framework, as well
as implementation of an ”Abstract forms” that ensured modularity for implementing future forms. To
accommodate these requirements and meet the scope of the project, a linear approach of the Waterfall
methodology has been adopted.

6.2 Waterfall Methodology in the Project

As discussed in Section 4.6, the project has been completed following the Waterfall methodology. The details
regarding integration of the Waterfall methodology are as follows:

Requirements gathering and Planning
Detailed planning is the core process of the Waterfall methodology and for this process it is mandatory that
the requirements are defined and clear to every stakeholder. However, in the beginning, the customer require-
ments were not certain as some functional requirements required reconsideration by the customer.

Requirements gathering using Agile
To define the requirements and scope of the project, several meetings with the client were scheduled. Some
of the requirements were a cause of uncertainty such as:

• Signing of a form using BankID: For implementation of this requirement, a BankID API has to be
integrated. This could be expensive as there is a fee on each use of BankID. Alternatives were discussed
in different meetings which led to the agreement to use different levels of signatures.

20

• The current system lacks a proper access control system. This meant that the changing of access rights
upon form completion could not be implemented. Therefore, to accommodate this change the scope
of the project was redefined with the consent of the customer.

After meetings and discussions, both within the team and with the customer, the requirements were changed
and logged in Appendix A. A decent portion of time was dedicated to requirement gathering and refining,
as the rest of the project was highly dependent on the requirements.

Analysis and Design
With the conclusion of the requirement gathering process, the analysis and design phase was initiated. As the
result of the established requirements, the system’s technical design was devised. According to the Waterfall
methodology no coding takes place at this point. However, the technical requirements were identified such
as programming language, requirements for user interface and database infrastructure. During this process
the component diagram was defined along with an ER diagram. The ER diagram and component diagram
are shown in Figure 4 and 5 respectively.

Implementation and coding
The blueprint for implementation and coding is provided by the analysis and design phase. As per the
non-functional requirement NFR1 in Table 7, the FMS has to be developed using the Django Framework.
Thus, Django was learned and used in this phase.

To develop a functional prototype, practises from Extreme Programming and Scrum were adopted and used.
See Section 6.3 for details.

Testing
Testing is the final phase in the Waterfall methodology. The main objective of the phase is to verify and
validate the product. For this purpose, a thorough usability test was conducted in which the prototype
was tested for use cases 1, 2 and 3 described in Section 8.5.2. Minor bugs were reported and fixed during
the testing process. The prototype was also unit- and integration tested. This ensured that the individual
modules were working and free of bugs. The details of the testing phase are documented in Section 10.

6.3 Adaptions to the Waterfall Methodology

During the implementation phase, some practices from Extreme Programming and Scrum were used. Ex-
treme Programming values communication, feedback and respect [8]. The chosen practices of Extreme
Programming and Scrum are:

Pair Programming
Pair programming allows the team members to work together in pairs to enhance learning and tackle bigger
tasks together. This was useful since none of the team members had experience with Django and the team
members could learn Django together. Pair programming was also useful to use each others expertise and
help each other during the project. Using Pair Programming enhanced learning among the team members
and helped the members to get a better understanding of the code base.

Coding Standard
Coding standard ensures that the team members agree upon a set of rules. The rules included that the team
should, to the best of their ability, use the same coding standard as the customer. This is to have consistency
through the whole system, and have the same file structure as the customer.

Collective Code Ownership
Collective code ownership makes each team member responsible for the code and everyone is allowed to
change any part of the code. This is so that each team member has knowledge about most of the code. This
was managed to some extent, so if a team member was sick or was unable to work, others could take over
and continue the work. Team members could contribute if there were any problems with the given task or
help with understanding of the task.

21

Continuous Integration
The team used git for version control and Github to share the repository. To avoid ”integration hell”[9]
the team worked on separate branches that were continuously updated to reflect changes done to the main
branch. This ensures that the developers work on the same or similar stage of the code. The tasks were
divided among developers into smaller atomic tasks. Upon completion, the code was reviewed and then
added to the main branch. All the functional requirements were completed as a deliverable to the testing
phase.

Weekly Stand-ups
A practice that was adopted from Scrum was Daily Stand-ups, but since the team did not meet daily, it was
changed to Weekly Stand-ups. The Stand-ups were held to inform the other team members what had been
done since the last Stand-up, what problems they may have encountered and what they were planning on
doing next. See Appendix D for a summary of some important Weekly Stand-ups.

6.4 Technology and Frameworks

The current system is built as a web application using Django 2.1. Since the team was expanding an existing
system (MMS), the team was given little flexibility in the choice of language and framework to use. The
main technologies and frameworks required by the customer to be used for developing the product are shown
in table 14.

Technology type Technology name Description
Web Framework Django 2.1 Already in use by the existing system
Programming language Python 3 Required by Django 2.1
Build Environment Docker Create an identical environment for every de-

veloper
Front-end styling UIKit Required by the customer as a non-functional

requirement. See NFR6 in Table 7

Table 14: Technologies and frameworks used for developing the product.

Details regarding other technologies and frameworks used are as follows:

Python
Python is an interpreted high-level general purpose programming language [10]. Django 2.1 requires Python
3 [11], and since Django 2.1 was required by the customer, the FMS was developed in Python 3.

Django
Django is a free and open source web framework written in Python. Django handles the database setup
and interaction, the logic and the visual presentation of a web application [12]. The MMS developed by the
customer is implemented with Django, and the customer wants the team to develop a Django module to
expand their system.

Docker
Docker performs operating-system-level virtualization, and can be used to make sure that all the developers
have identical environments, separated and generated isolated for this project. This has several benefits,
including an increase in developer productivity and faster issue resolution [13]. The existing system that
the team got from the customer as a starting point were configured to use Docker. However, team members
developing on machines running Windows Home had issues with the Docker-setup. This issue was solved
manually by modifying the global environment to reflect the project’s environment. Although this solution
works, it is up to the developer to make sure that the environment stays consistent. Another benefit of docker
is that the production and testing environment mirrors the development environment. This means that tests

22

are run in a identical environment as production. Other benefits with Docker are easier deployment through
containers.

Travis-CI
The customer uses Travis-CI [14] for automatic unit- and integration testing. The repository set up for
the team for this project included a configuration of Travis-CI, but the team chose to disable continuous
integration due to a bug in the configuration given by the customer that the team had insufficient permissions
to correct.

UIKit
UIKit is a CSS library that simplifies and standardize the front-end styling. Although our job was primarily
back-end development, some front-end development had to be done. The customer uses UIKit for styling of
the other parts of the system, and the customer specified the use of UIKit as a non-functional requirement
(see NFR6 in Table 7).

Selenium
Selenium is a browser simulator most commonly used to test the functionality of a web page. The team
used Selenium to create automatic tests which simulates a user clicking through the application. Using the
django-nose test-suite the tests written assert if a given state is as expected. We have used Selenium as it
has strong python support and the customer had already set up a working environment.

Bandit
Bandit [15] is a program designed to find common vulnerabilities in Python code. It does so by parsing each
file. It logs a report showing the vulnerabilities and the severity of each one. It was used to make sure that
there were no severe security vulnerabilities.

23

7 Tools

The customer suggested that the team should use many of the tools that they already use for the project in
their in-house developing team. The customer provided most of the tools used for this project, but allowed
the team to suggest and use other tools as well if there was a need for it. The team decided to use the tools
provided, as many of the team members were familiar with those and the tools where either open source or
well known.

The tools provided by the customer that the team used for management of the project, communication
between the team and the customer, and source control management are summarized in table 15.

Type of Tool Tool used Description
Communication Slack Main communication channel between the

team and the customer.
Version Control Git Well known tool and already used by NTNUI.
Document Sharing Google Drive Versatile tool for document sharing, creation

and collaboration. Used by the team for meet-
ing agendas, reports and a place to share im-
portant documents for the project that were
not part of the code.

External hosting of source code GitHub Well known service for hosting git repositories
and already used internally by NTNUI.

Table 15: Tools for Management, Communication and Version Control provided by the customer and used
by the team.

7.1 Version Control Management

The current system used Git for version control management. Git is open source distributed version control
system and is used by many well known and large open source projects around the world [16]. Most of the
team members are familiar with Git and it was therefore natural for the team to continue to use this tool
during development.

Branch Strategy
Git allows frequent branching and merging of code, and the team used this approach during development.
The code had a dev branch that was always a working version of the product. All features were added by
first branching of dev to a separate feature branch that was later merged into dev after internal approval
and review by at least one other team member. This setup made it easy for the developers to work on
different features in parallel with each other.

Merge Strategy
A feature branch is merged into dev after an approved pull-request of the feature branch and after the
feature is working and complete. If a merge conflict occurs, the owner of the pull-request and the owner of
the conflicting part of the code resolve the conflict together during the merge.

7.2 Communication and Documentation

GitHub
The source code of the current system is hosted at GitHub as a private repository only visible to the customer
and the team members. The customer created a new repository for the team containing a fork of the current

24

system. The team decided to continue to use this repository as a remote hosting of the project during
development. GitHub provides a good way to look at commit history and to discuss pull-requests before
they are merged with the main branch [17].

Slack
The customer suggested to use Slack as the main communication channel between them and the team.
Slack has the advantage that communication is confined in different channels and threads and it is therefore
easier to organize and navigate in the communication history [18]. Slack was used to communicate with the
customer, clarify unforeseen issues during development, and schedule meetings. Two channels were created:
one for communication between the team and the customer and one for internal communication between the
team members. However, Facebook Messenger was more convenient for the internal discussions in the team
as team members answer more quickly there, and the internal slack-channel was rarely used.

Google Drive
Google Drive is a versatile cloud platform for file and document sharing, creation and collaboration [19]. It
is free to use and all team members are familiar with it. The customer provided the team with access to a
shared Team Drive and suggested that we used this as the main tool for storing and sharing files not directly
related to the code. Both the team and the customer had access to the Team Drive.

Overleaf
Overleaf is a free online tool for creation and collaboration of documents written using LATEX[20]. The team
chose to use Overleaf for the technical report as it would make it easier to write different chapters in parallel
and because LaTeX allows full control over the layout and formatting of the report. This includes automatic
table and figure references in the text and linked chapters in the compiled PDF file. NTNU has a premium
licence for its students, which makes all team members able to work on the same document at the same
time.

7.3 Graphics and Figures

Sketch
Sketch is a vector graphics editor that allows users to easily create paper prototypes for software systems.
The application also provide the functionality to link the paper prototypes together so that it’s possible
to run a paper prototype demo within the application. The team chose to use this tool because a team
member was familiar with the software and owned a license. In this project, the team used Sketch to create
paper prototypes (see Appendix C.2) for the system, showcase the paper prototypes and share the paper
prototypes through Sketch’s cloud service.

Draw.io
Draw.io [21] is an online tool for creation of various diagrams including flow diagram, class diagram, etc.
The team chose to use draw.io because it is free, easily accessible and works well for our purpose. It also
supports collaboration.

25

8 Architecture and Design

This section explains the main architectural drivers, namely technical constraints and quality attributes.
The quality attributes will be linked to relevant functional and non-functional requirements (see Table 6
and Table 7). The architectural patterns and tactics used are also presented. Lastly the 4+1 architectural
view-model is used to describe the architecture from the different viewpoints of various stakeholders.

8.1 Architectural Drivers

A significant technical constraint is that the application needs to be developed using the Django framework
(NFR1). This limits the group’s architectural decisions, as further development needs to adhere to the
architecture Django is built upon. Another technical constraint is that all styling should use the UIKit
CSS-library (NFR6). This may have some implications for the usability of the product.

The customer explicitly asked for a modular forms app within their existing MMS. Modifiability, as it is
closely related to modularity, is therefore the primary quality attribute when designing the FMS. The FMS
should be as small and modular as possible. It should be easy for programmers to add new forms to the
system without replicating code. This quality attribute can be linked to FR1 and due to this requirement’s
priority, it is regarded the most important.

Security is a secondary quality attribute. Data confidentiality and data integrity is especially important. The
FMS will potentially collect vast amounts of data, and it is important to ensure that this data is protected
against unauthorized access as well as unauthorized manipulation [22, page 147]. This quality attribute can
directly be linked to FR4 and NFR7. It can implicitly be linked to FR6, FR13, as these requirements relate
to access control.

Usability is another secondary quality attribute. The different views created should mirror the existing
solution as much as possible in terms of visual design. The user should be presented with views that are
intuitive and easy to interact with. This quality attribute is linked to FR6 and NFR6.

8.2 Architectural and Design Patterns

8.2.1 Model-View-Template (MVT)

Django is a python web framework and is built around the MVT-pattern. MVT is slightly different from the
Model-View-Controller (MVC) pattern in that the controller part is handled by the Django framework itself.
As illustrated in Figure 3, the template layer is the presentation layer, defining the layout and structure of
the design, and is usually a collection of HTML files containing both HTML and Django Template Language
(DTL). The model is the database layer, and one model usually corresponds to a table in the database. In
other words, this layer contains the data and handles how the data should be accessed and validated. The
View functions as a bridge between the model and template. The view receives HTTP requests, accesses
the relevant data in the database, and returns an HTTP response while delegating the formatting of these
responses to the templates [23, 24].

8.2.2 State pattern

The state pattern is a behavioural design pattern that has been used in order to make the FMS as modifiable
as possible. Each form will have a list of actions that the system should perform and the state of each form is
stored. Defining the actions is the responsibility of developers and form creators. Examples of such actions
can be to notify the form-signer and to change access rights when a form has been signed or approved.

26

Figure 3: Django’s MVT architecture [23]

The actions in a form’s action list will be performed by the system sequentially until the form is marked as
complete. It should be easy for developers to add new actions if needed, and these actions should not affect
the existing actions.

8.3 Architectural Tactics

8.3.1 Modifiability Tactics

One of Django’s fundamental goals is loose coupling and high cohesion. In Django, coupling is reduced by
restricting dependencies and having different layers which are independent of each other wherever possible.
This means that the various layers should not be aware of each other unless it is absolutely necessary. For
example, the view layer operates independently from the template layer, and the model is not concerned
with how the data is presented to the user [25].

While developing the FMS, the team tried to build upon the advantages of Django’s architecture by reducing
coupling and increase cohesion within the FMS. This includes increasing semantic coherence by ensuring
that all form-related logic is contained within the forms application, and that its responsibility is clear and
concise. Loose coupling within the FMS has been maintained by ensuring that the different views are
properly decoupled from the various templates they are rendering.

8.3.2 Security Tactics

The security tactic Authenticate actors has been used in order to ensure that the user accessing the system
actually is who they purports to be. A user needs to be logged into the system in order to get access to the
FMS. Upon signing a form, the the password needs to be confirmed by the user. After login, the security
tactic authorize actors has been used to ensure that the user has the right credentials to perform certain
tasks. Only a user with the role ”president/leader” is able to instantiate a new form, and a user is only

27

permitted to fill out a form if it is part of the ”signers-list” specified on the form, and has not previously
filled out the form [22, page 152].

8.3.3 Usability Tactics

To facilitate efficient use of the system, as well as minimize the impact of errors and increase overall user
satisfaction, one can make use of some usability tactics [22, page 177-180]. Django automatically handles
form validation, and gives the user the appropriate error messages when forms are filled out incorrectly. In
addition, the FMS supports user initiative by having the ability to pause/resume, meaning that when a user
is filling out a form, the input should not be lost if the user decides to continue filling out the form at a later
time. In addition, the visual layout presented to the user is developed to seem as similar to the existing apps
as possible in order to make a consistent interface the user can interact with.

8.4 Entity Relation Model

The ER-diagram of the database structure of the FMS that was created by the team is shown in Figure
4. The entities UserModel and GroupModel are parts of the MMS and connects the FMS to MMS. The
FormTextModel is an entity-class where static form information is stored. The various form types in the
FMS should be disjunct sub-classes of the AbstractFormModel.

Figure 4: ER-diagram of the FMS. Note that UserModel and GroupModel entities are part of the MMS.

28

8.5 The 4+1 Architectural View Model

8.5.1 Architectural Views

The 4+1 architectural view model consists of a logical view, process view, development view and physical
view, as well as use cases. The advantages in using this model is that it presents the architecture in different
ways to different stakeholders. The logical view is illustrated in Figure 5 and is an abstraction of the most
important functionality provided to the end users. The process view is illustrated with a flow diagram and
sequence diagram, presented in Figure 6 and 7 respectively. This view describes the workflow and processes
of the system, the communication among them, and how specific tasks are performed. The flow diagram
illustrates the flow of the FMS after a form signer has received a notification in-page or by email. Note
that this diagram encapsulates some future work, such as different signature levels (see Section 13.3). The
sequence diagram visualizes a successful attempt to fill out and sign a form after clicking a form link. The
development view, presented in Figure 8, is a more detailed version of Figure 3. This view shows the software
module organization and illustrates the FMS from a developer’s perspective. The physical view is shown in
Figure 9. This view is provided by the customer as deployment of the system has not been a part of the
project scope.

Form
FR1, FR5, FR8, FR11, FR12

Abstract Form
FR1

Inherits

Action Services
Utility

FR7, FR11

User Interface
FR13, FR4, FR5,

FR6, FR10

Database Services
Utility

FR2, FR6, FR10,
FR12

User Authentication
Services

Utility
FR13

Uses

Signing Services
Utility

FR4, FR10

Uses Uses
Uses

Uses

Uses Uses

Uses

Uses

Back-end

Front-end

Figure 5: Logical view of the FMS components. The figure shows how the system components support
the functional requirements. E.g. FR13, from Table 6, is fulfilled by the User Interface and the User
Authentication Services. FR3 and FR9 were taken out of scope, see Section 3.4.

29

Fo
rm

-o
w
ne
r

Instantiate
form

Notify signer

Confirmation received

Fo
rm

-s
ig
ne
r

Input
information

Level of required signature

Input
password

Has BankID?

Elevated

Sign form
with BankID

Print form

No

Sign form
physically

Upload form

Notify owner

See
completion

Notification received
Password

Yes

Figure 6: Flow diagram visualizing the flow of the FMS after a user has received a signing notification.

Client

InfoView.get

View Model

Click form-link

render form_info.html

Display InfoView

FormTextModel.get

FormTextModel

Click[Til utfylling] SignerView.get

render form_signer.html

Display SignerView

AbstractFormModel.get

AbstractFormModel

Submit form

SignView.get

 render confirm_password.html
Display SignView

Confirm password

SignView.post

render archived_incoming_list.html

user.check_password

true

Display IncomingArchiveView

Figure 7: Sequence diagram visualizing a successful attempt at filling out and signing a form.

30

abstract_form_model
form_text_model
coach_form_model
team_contract_form_model

InstantiatorView
InfoView
SignView
IncomingView
IncomingArchiveView
OutgoingArchiveView
SignedFormView
SignerView

forms/modelsforms/views

archived_incoming_list.html
archived_outgoing_list.html
form_info.html
form_instantiator.html
form_navbar.html
form_signed_info.html
form_signer.html
form.html
incoming_list.html
outgoing_list.html

forms/templates

Read/Write
data

URLS
forms/urls.py

Request
 View

HTTP
Response

HTTP
Request

Start

End

Figure 8: Development view of the forms application: A more detailed view of Figure 3.

Figure 9: Physical View of the system provided by the customer

31

8.5.2 Use Cases

Use cases are important to get an overview of the normal progression in the most important parts of a system
and to illustrate and validate architectural decisions [26]. The following use cases, presented in Table 16, 17,
18 and 19, are created to illustrate how the FMS works for different stakeholders. The use cases are related
to the functional requirements described in Table 6.

Use case ID U1
Priority High
Actors User
Use case summary The user will sign a form using password
Pre-condition The user is logged in to the system, and is a member a

group. The user is on the ”Skjema” page
Normal Course of Events Alternate Path
1. The user will view available forms for signing on
”Mottatte skjema” (recieved form) page

2a. If there are no forms available this will be display a
”no forms available” message

2. The user clicks on a form link and can view the
content of the form
3. The user clicks ”Til utfylling” (to fill out) button
4. The user can fill out content that is specified by that
form
5. The user clicks ”Til Signering” (to signing) button
6. The user writes its password to sign the document 4a. If the user enters wrong password then ”wrong pass-

word” message will be shown.
Post Conditions The user will successfully have signed a form

Table 16: Use case for where a member of a group is signing a form. This use case is linked to the functional
requirement FR4 and FR10, which is an important part of our system.

Use case ID U2
Priority High
Actors User that is Leader/President of a group
Use case summary The user will instantiate and send out a form to form-

signer
Pre-condition The user is logged in to the system, and is a member a

group. The user is on the ”Skjema” page.
Normal Course of Events Alternate Path
1. The user clicks on ”Send skjema”(send form) page to
instantiate a new form.
2. The group the user is president/leader is chosen au-
tomatically

2a. If the user is president/leader in multiple groups.
The user can choose which group to send the forms from.

3. The user selects a form-signer from the group he have
selected
4. The user selects the form the user wants the form-
signer to sign
5. The user clicks send
Post Conditions The user will successfully have instantiated and sent a

form to a form-signer

Table 17: Use case for where a president/leader of a group is instantiate a form. This use case is linked to
functional requirement FR4 and FR5.

32

Use case ID U3
Priority Medium
Actors User that is a member of a group
Use case summary The user will retrieve a form that has previously been

signed.
Pre-condition The user is logged in to the system, and is a member

a group. The user is on the ”Skjema” page.
Normal Course of Events Alternate Path
1. The user clicks on ”fullførte skjema” (finished
forms) page to look forms they have signed.
2. The user can view old forms the user have signed 2a. If the user never has signed a form. This will be

empty
3. The user click on the signed form
4. The user can view the form the user have signed
Post Conditions The user will successfully have looked at a previously

signed form

Table 18: Use case for where a member of a group is finding old signed forms. This use case is partly linked
to functional requirement FR6 and FR14.

Use case ID U4
Priority High
Actors Developer
Use case summary The developer will create a new form to be stored in

the database, ready for instantiation.
Pre-condition The developer has access to the source code and all

needed technology.
Normal Course of Events Alternate Path
1. The developer creates static form information
as HTML and stores it in a FormTextModel in the
database/fixtures directory.
2. The developer creates a model for the form, inher-
iting from AbstractFormModel. The developer also
specifies form name, sign type, form slug and form
specific user input-fields.
3. The developer specifies a list of actions that
should be undertaken after a form is instantiated

3a. The developer creates a new action if the
form requires an action that has not yet been im-
plemented, and adds this to the actions-list.

4. The developer creates a form inherited from
ModelForm and defines the model that is to be used,
and specifies the fields that are to be presented to
the form signer.
5. The developer registers the form model created in
form types.py

Post Conditions The developer has successfully created a new form
ready to be instantiated

Table 19: Use case for where a developer creates a new form to be stored in the database ready for instan-
tiation. This use case is linked to functional requirement FR1.

33

9 Security

The FMS that the team developed used Django Open Source Libraries and was integrated with the existing
databases of the customer. The only requirement by the customer regarding security is that the FMS should
be developed in Django, as this framework caters various security issues by itself.

9.1 Security Features in Django

Some security features offered by Django for Web applications are:

Cross Site Scripting (XSS)
The template system of Django offers protection from XSS attacks in which an attacker can inject client side
scripts through the website into the browser of other users [27].

Cross Site Request Forgery Protection (CSRF)
To prevent CSRF attacks, Django generates a browser/user specific key and rejects a POST request if the
form does not contain the key, thus blocking CSRF attacks in which a malicious user can execute actions
using credentials of other users without their knowledge [27].

Enforcing SSL/HTTPS
HTTPS protection enabled in Django encrypts all the traffic between client and server which also includes
authentication credentials like Passwords and Username [27]. HTTPS ensures protection of the privacy and
integrity of the transmitted data, and prevents man-in-the-middle attacks where a malicious user can relay
or alter communication between a client and the server.

Using HTTPS in Django will also offer security measures that include:

• SECURE PROXY SSL-HEADER

• SECURE SSL REDIRECT

• HTTP Strict Transport Security (HSTS)

• Secure cookies

• Host header validation

Denial-of-Service attacks
For protection against DoS attacks, uploads can be restricted in the web server configuration to a reasonable
size. However, the FMS does not deal with file uploads, so this can be done at the server end where forms
will be stored.

9.2 Abuse Cases

Table 20 depicts the abuse cases for our project. The team has found several abuse cases by going through
the functional requirements, as well as looking at the Django framework [12]. The team used STRIDE [28]
to identify the threat associated with each abuse case. The team found countermeasures to each abuse case
to reduce or eliminate the security risks.

9.3 Static Security Analysis

Bandit[15] was used as a static security analysis tool. The FMS had a low severity security issue. This was
due to a try-statement with a passing exception. The only thing this ensures is that the program continues
to run on the error. The results from Bandit are depicted verbatim in Figure 10.

34

Abuse case Counter measures Threat
An user attempts to log in as an-
other user

Django’s built in authentication handles pass-
word and username. Could implement two-factor
authentication for stronger security.

Spoofing

A hacker looks at the intermidi-
ate nodes in the network to get
user credentials

Out of scope. Customer responsibility due
to being at the server architecture level.
At the server architecture level, SSL-encryption
should be used to encrypt the packages sent be-
tween the client and the server.

Spoofing

A hacker uses Cross Site Request
Forgery to force a state change in
the system

Django has built in CSRF protection enabled by
default. The system code also uses the django
recommended tags in templates for doing POST-
requests.

Tampering

An user tries to access another
users form, by going directly to
the url

The system verifies that the given user has access
to the form before sending the form information.

Information dis-
closure

A malicious user tries to prevent
the access to the system by re-
questing a lot of data

Out of scope. Customer responsibility du
to being at the server architecture level.
The system should use load-balancing and mon-
itor unusual requests, as well as blacklist IP-
adresses with an unusual amount of requests.

Denial of service

An user with administrative
privileges changes the content or
input of a form after it has been
signed

Not safeguarded against. There is no way to
prevent this abuse at the moment. A solution
would be to hash the input, the form content and
the time to verify at signing. This could be used
to verify that a form has not been changed at a
later time.

Tampering

Table 20: Abuse cases for FMS

Code scanned:

Total lines of code: 728

Total lines skipped (#nosec): 0

Run metrics:

Total issues (by severity):

Undefined: 0.0

Low: 1.0

Medium: 0.0

High: 0.0

Total issues (by confidence):

Undefined: 0.0

Low: 0.0

Medium: 0.0

High: 1.0

Files skipped (0):

Figure 10: Static security analysis using Bandit

35

10 Testing

The following section provides an overview of the testing of the FMS. Each section will go through the
specific testing method and the results from each method.

10.1 Unit and Integration Testing

The customer did not weigh the importance of unit tests and instead wanted integration testing. The
team did, however, write several unit tests to verify and confirm our own understanding of the code as
well as to ensure quality of the code. This also acts as documentation, as future developers working on
the same code can use the unit and integration tests to understand the functionality and properties of the
classes and methods involved. It will also ensure that future work does not overwrite intended functionality
accidentally as the tests would fail. Not all lines of code were tested, as parts of the code consists of simple
database-models or had limited amount of functionality.

Figure 11 shows the verbatim output when running the django-nose test-suite with the --code-coverage

flag. The django-models have not been tested due to the lack of any specific functionality.

10.2 Automated Functional Testing

A big part of the automated testing comes from the functional tests. These are done using the browser
simulator Selenium (section 6.4). Selenium allows us to simulate the flow of the user in a browser. The
functional tests are written using the DOM-elements on the web page, and running events on these, such as
clicking a button, or writing in an input field. By clicking through the application simulating a user, the test
shows both whether or not the application works and gives predictable results, but it also verifies whether
or not changes in code change the functionality and usability of the application. An example would be a
change in routing, a part that is not often tested, but one that can easily go unnoticed after a single typo.
Browser testing is an insurance against these types of errors going into production. The functional tests
encompass the entire user-flow: from log in, to creating a form, and signing it.

The functional tests follow the flow of use cases U1 (Table 16) and U2 (Table 17). They continuously check
that each step of the flow is as predicted. See Table 21 and 22 for overview of tests.

ID 001
Description Create form
Task 1. Log in

2. Go to forms
3. Go to create form
4. Input group, signer and formtype
5. Create form

Result Form is created and added to tab for sent
forms

Table 21: Automated functional test 001

By comparing Figure 11 to Figure 12 , the code coverage increases from 38% to 73%. This is expected, as
the functional test cover the entire flow of the user, and more parts of the system are executed.

36

Name Stmts Miss Cover

--

forms/__init__.py 0 0 100%

forms/actions/__init__.py 1 0 100%

forms/actions/action_abstract_class.py 6 0 100%

forms/actions/actions.py 16 5 69%

forms/actions/notify.py 27 4 85%

forms/admin.py 7 7 0%

forms/form_types.py 4 0 100%

forms/forms.py 22 11 50%

forms/migrations/0001_initial.py 7 0 100%

forms/migrations/__init__.py 0 0 100%

forms/models/__init__.py 3 3 0%

forms/models/abstract_form_model.py 26 25 4%

forms/models/coach_form_model.py 19 19 0%

forms/models/enums.py 2 2 0%

forms/models/form_text_model.py 9 9 0%

forms/utils/form_utils.py 22 18 18%

forms/views/__init__.py 7 0 100%

forms/views/archived_list_view.py 16 8 50%

forms/views/info_view.py 17 11 35%

forms/views/instantiator_view.py 62 46 26%

forms/views/list_view.py 16 8 50%

forms/views/sign.py 36 26 28%

forms/views/signed_form_view.py 16 8 50%

forms/views/signer_view.py 26 17 35%

--

TOTAL 367 227 38%

--

Ran 7 tests in 0.058s

OK

Figure 11: Code Coverage of Unit and Integration Tests. Stmts is short for statements. Miss is amount of
lines not covered. Cover is the percentage of code covered by the tests

10.3 Usability Testing

The views referred to in this section can be found in Section 11 and Appendix C.1. The leader perspective
contains the views in figures 18, 19, 13, 20 and 21. The regular user perspective contains the views in figures
15 and 17. Both perspectives share form signing views in figures 14a, 14b and 14c.

10.3.1 Test Preparation

One of the non-functional requirements specified by the customer was that the product should be user
tested. The team has arranged the test to be conducted on 01.11.2018 in IGB-Ø2 in Berg, Gløshaugen.
On 16.10.2018 the customer agreed to provide 6 to 10 test subjects. The purpose of the test was twofold.
For the sake of this project, the test was mainly summative - to gauge the usability of the product as a
finished system. This was done with respect to form management aspects that are common for all types of
forms, which will be relevant for all NTNUI members once the system is deployed. The formative aspects
of the test will be used by the customer to further develop the system. These aspects support some parts of
the future work presented in section 13. Some of the smaller adjustments were implemented by the team.

37

ID 002
Description Sign form
Task 1. Log in

2. Go to forms
3. Go to received forms
4. Input form data
5. Sign form

Result Form is signed, and is updated accordingly

Table 22: Automated functional test 002

Considering we were tasked with developing a back-end for the forms system with minimal front-end as per
section 1.1, the main purpose was to test the flow of the form instantiation and signing process. Nevertheless,
the front-end was tested to lay the groundwork for future work regarding the user interface.

The test was carried out by Siren, Kristian and Jan. A document describing the details of the test was
prepared in advance of the actual test, parts of which were either incorporated into this report or attached in
appendix B. In advance of the test, a preliminary pilot test was conducted to prepare the team and discover
potential errors with the layout.

10.3.2 Test Subjects

The team agreed with the customer on 16.10.2018 that they will provide 6 to 10 test subjects. This resulted
in the customer providing us with a schedule containing six participants including their names, time of
arrival, group membership and group roles. A selection of this information is presented in Table 23. The six
given participants allowed the team to perform a proper qualitative analysis with regard to the scope of the
system. According to Jakob Nielsen’s research regarding quantity of test subjects [29, page 389], the test
should have discovered around 80% of usability problems assuming high test validity.

Test subject TS1 TS2 TS3 TS4 TS5 TS6
Time 12:15 12:30 12:45 13:45 14:15 14:30
Role Cashier Vice president Webmaster President Webmaster President

Table 23: Test schedule as specified by the customer

The subjects were a random selection of NTNUI members. This meant that the subjects are 18-25 years
old students and have partial higher education. Because of that we expected the subjects to have basic
technological understanding. Having NTNUI members as test subjects meant that we tested the system
with potential future users of the product, which contributes to the test validity. Considering that the
release date of the full system is unspecified, it is not possible to ascertain whether the test subjects will be
among the actual future users. Some of the system functionality is reserved for group leaders which represent
a minuscule subset of NTNUI members. The reserved functionality was tested with basic members anyway
to gauge how intuitive the user interface is. All of the participants had roles like leader, cashier or webmaster
in their respective sport groups under NTNUI, so there was a bias for people who are significantly engaged
in various organizations. This meant that the system was not tested with less engaged people, like the ones
who are members of NTNUI just for the sake of exercising. The user experience of less engaged members
would probably different, but this could not be tested given the kind of test subjects provided.

38

Name Stmts Miss Cover

--

forms/__init__.py 0 0 100%

forms/actions/__init__.py 1 0 100%

forms/actions/action_abstract_class.py 6 0 100%

forms/actions/actions.py 16 0 100%

forms/actions/notify.py 27 1 96%

forms/admin.py 7 7 0%

forms/form_types.py 4 0 100%

forms/forms.py 22 0 100%

forms/migrations/0001_initial.py 7 0 100%

forms/migrations/__init__.py 0 0 100%

forms/models/__init__.py 3 3 0%

forms/models/abstract_form_model.py 26 24 8%

forms/models/coach_form_model.py 19 19 0%

forms/models/enums.py 2 2 0%

forms/models/form_text_model.py 9 9 0%

forms/urls.py 6 0 100%

forms/utils/form_utils.py 22 3 86%

forms/views/__init__.py 7 0 100%

forms/views/archived_list_view.py 16 4 75%

forms/views/info_view.py 17 1 94%

forms/views/instantiator_view.py 62 13 79%

forms/views/list_view.py 16 0 100%

forms/views/sign.py 36 6 83%

forms/views/signed_form_view.py 16 8 50%

forms/views/signer_view.py 26 2 92%

--

TOTAL 373 102 73%

--

Ran 12 tests in 36.713s

OK

Figure 12: Code Coverage of functional testing. Stmts is short for statements. Miss is amount of lines not
covered. Cover is the percentage of code covered by the tests

10.3.3 Test Tasks

The tasks presented to the participants are shown in the appendix B.1. They were translated to Norwegian
before the test, because all of the participants were Norwegian. The first three use cases presented in Section
8.5.2 were used as a starting point for the test formation. Furthermore, the tasks were designed in a way that
encompasses every aspect of the user interface - every implemented view was tested. The tasks were divided
based on the two types of users: regular users and leaders. This necessitated some intervention during the
test to adjust the environment.

10.3.4 Test Proceedings

The team decided in advance the test-related duties of every present team member. Siren was responsible for
taking notes and measuring the task time. Kristian was responsible for presenting the test and the tasks to
the subjects. Jan was also responsible for taking notes, as well as for the maintenance of the test environment.
Every team member was provided with an overview of what the participants should know before the start

39

of the test, team’s conduct under the test, and follow-up questions. The overview was written in Norwegian,
but the basis for it was written in English and can be found in the appendix B.2. The team also had seven
copies (one extra) of consent forms that the participants signed to let us use their data for the sake of the
test. Every team member had seven copies of the overview of the tasks with extra space for taking notes
during the test.

The customer gave minimal information to the participants when scheduling the test, so some of them were
somewhat confused after coming into the test room. Once in the test room, the participants were told
about the purpose of the test and other formalities which clarified any confusion. The information presented
was based on the overview B.2 as described above. After that the participants were presented with and
completed the tasks one by one. When all the tasks were finished, the team discussed the product with the
participants.

Due to minor recurring task slowdowns, the team added small clarifications to the user interface after the
first three participants were finished. They consisted of adding navigation links to list help text and changing
button text in views related to form signing (figures 14a and 14b).

10.3.5 Test Analysis

After the test was finished, the team collated the notes for analysis. The product proved its function as a
form management system based on the opinions of the participants. The consensus was that this kind of
system would improve the bureaucratic processes of NTNUI. The validity of this statement is mediocre due
to having only six participants as provided by the customer.

The test showed that the regular user perspective was very intuitive. This is important because regular users
do not handle forms often, so a convoluted system would require constant relearning. The leader perspective
was more complicated and not as intuitive at first. This is compensated by the fact that leaders will spend
more time managing forms than regular users, so they will have to take a more structured approach when
exploring the views. This is supported well by the help text present in every view. Table 24 presents
observations regarding possible shortcomings and suggests how the system can be improved in the future.
For the sake of the conciseness of the report, an in-depth analysis of the test is presented in appendix B.3
that might be valuable to the customer.

Observation Possible solution
Participant navigates to the group view instead of
the forms view when on the main page.

Add a button navigating to forms view in group view.

Participant is confused about the contents of the cur-
rent form list view.

Improve the help texts in the form list views.

Participant wants to find a form more easily. Add sorting and querying functionality to the form
list views. A suggested solution can be seen in Figure
27.

Participant expects finished forms to be expired. Add expiration date to the abstract form model and
create a view that shows expired forms.

Participant doesn’t know where the form they are
trying to find is.

Show signed and non-signed forms in the same view
with non-signed forms at the top prior to sorting (if
sorting is implemented).

Participant doesn’t see the status of a form. Make the status more visible by using a separate col-
umn and colors, icons, or decorated text.

Participant has trouble with the date picker. Find an alternative/addition to UIKit that supports
a date picker.

Table 24: The shortcomings observed during the test and their possible solutions.

40

11 Final Product

The final product that has been developed works as required by the functional requirements. It is a minimal
viable product and as such fills the requirement set by the course TDT4290. The product allows for user
signing, instantiating of forms, notification through email, and a view of forms. The code-base of the
product is fully integrated with the code-base of the existing member management system. It follows a
similar design to the MMS. The developed system eliminates the use of paper forms in most cases. It
enables the signing of forms to happen anywhere and anytime, and the need for a physical exchange of forms
is greatly reduced.

11.1 User Guide

To access the FMS, the user has to click on the ’Skjema’ menu item. If the user has the role ’President/Leader’
in at least one sports group, the user will be presented with four different tabs:

• Send Skjema: Instantiate and send out new forms.

• Utsendte Skjema: View status of the delivered forms that have not yet been completed.

• Mottatte Skjema: View received forms that are to be signed by the user.

• Fullførte skjema: Archive of completed forms, both Mottatte Skjema and Utsendte Skjema.

A regular user has access to the following tabs:

• Mottatte Skjema: View received forms that are to be signed by the user.

• Signerte Skjema: View forms that have been signed and completed.

The ’Send Skjema’ view is shown in Figure 13. A user with the role ’President/Leader’ can configure a new
form and send it to a user that has to fill out and sign it.

Figure 13: Leader perspective view that allows the user to send out a form to another user.

41

After the form is sent, the form-signer receives an email that includes information about the form and a direct
link to that particular form. If the form-signer accesses the link, he/she is presented with static information
about the form shown in Figure 14a. This information page can also be accessed through the form-signer’s
’Mottatte Skjema’ view, Figure 15. By clicking the button ’Til Signering’ at the bottom of the page, the
user is taken to the view shown in Figure 14b. Here, the user can fill out the information required by the
form, and the information will be stored by the FMS for later retrieval. After the user clicks ’Til Signering’,
the user has the possibility to sign the form. The ’sign with password’ view is shown in Figure 14c.

(a) The view containing form info shown to the user
before signing.

(b) The view containing form input fields shown to
the user before signing.

(c) The final view in the signing process re-
questing the user to confirm their password to
finish signing the form.

Figure 14: View of form text(a), user information input(b) and password verification(c).

After the signature has been submitted correctly, the user is redirected to ’Signerte Skjema’, and the ’Presi-
dent/Leader’ that initiated the form receives an email notifying him/her that the form has been signed and
completed.

42

Figure 15: The default view of the regular user perspective. Contains received forms that are awaiting a
signature.

Additional screenshots of the final product can be found in Appendix C.1.

11.2 Installation Guide

The system is easily built and run using Docker on Linux, MacOS, Windows Pro and Windows Enterprise.
To build and run the system, follow these steps:

1. Make sure Docker is installed and working. See https://www.docker.com/products/docker-desktop
for details.

2. download and extract the source code from https://github.com/kapteinstein/tdt4290

3. in the source code folder run:

make build && make dev_clean_install

Docker will take care of the dependencies and environment. Access the site at http://localhost:8000 and
login using one of the mock-users: username mock@user.com and password locoloco.

43

https://www.docker.com/products/docker-desktop
https://github.com/kapteinstein/tdt4290

12 Group Reflection and Evaluation

12.1 Description of Group Dynamics

The first lecture of the course TDT4290 “Customer Driven Project” was about “Group Dynamics” conducted
by Christine Holm Berntzen and Marianne Ingeborg Karlsen from Sit R̊ad. As defined in the lecture, the
“Group Dynamics” is all about how a group functions, how team members can cooperate and communicate
with each other, and how conflicts can be resolved within the group.

The lecturers defined four stages of group dynamics which include Forming, Storming, Norming and Per-
forming [30]. The lecture also included an activity in which the goal was to identify which type of personality
we had as individuals and how different type of personalities can create a performing group. The activity
also enables us to appreciate the differences in personalities we have and to use these differences for better
performance of the group.

12.2 Reflection on Group Dynamics

Our team consists of seven people with varied background and experiences. The most important factor
for working as a team is that we have to develop a strong communication among all team members. For
this purpose, the team shared their contact information and used all channels of communication for prompt
response from each other.

The next step was to develop a mutual understanding of the project and to use individual expertise of group
members in their respective areas. During the planning phase of the project, all team members provided their
input for allocation of task and devising schedule for completion of the assigned task. For the implementation
and documentation phase the team marked some obligatory hours. Along with this, meetings were organized
twice a week so that the team members could communicate with each other and convey their progress and
problems, if any. In case of late arrival of a group member or if the member is absent, the other group
members carry on their tasks and communicate the progress to the members through email or Google Docs
where the status of the project is updated on a regular basis. In addition to the organized group meeting,
the team members have also spent individual working hours on their assign tasks and shared the work online
so that other team members could comment or review the work.

The team did not face any major conflicts. In case of any issues, the issue was solved through open discussion.
The communication among group members was improved throughout the project. In general, the team has
worked in a cooperative and cohesive way and the overall learning experience of team members have been
positive.

12.3 Customer Relations

Our customer, NTNUI, is an important stakeholder of the project. The representative of NTNUI have
played a significant role in the successful completion of the projects. Initially the requirements defined by
the customer were not very discrete and scope of the project was not clearly defined. After regular meetings
with the customer the scope of the project was redefined. Requirements were elucidated taking into account
the available resources and the system development at the customer end.

In terms of communication, the customer provided channels of communication that includes Slack and Asana.
The project team used these channels to communicate with the customer whenever it was required. During
the development phase the customer did not only go through the developed code, but also provided valuable
feedback and tips for progressive development of the system. The customer remained supportive throughout
the project and shared a great deal of knowledge to the team members.

44

12.4 What Future Students Should Know

The most important thing that future students of TDT4290 should know is that this is not only a course, but
a complete learning journey that can help them to gain practical knowledge of coping with a large project
and customers in real life. However, one difficulty that certain students may experience in this course is the
differences in the expertise and knowledge level among students from different academic and geographical
backgrounds. This is also a major aspect that can help them enhance their knowledge significantly and
acquire new skills.

Students should not refrain themselves from asking questions to other group members as this course intends
to impart practical knowledge between students. Students should not be afraid of telling what they do not
know or understand.

Another aspect of the course that students should be aware of is that sometimes they may be limited to use
specific technologies defined by the customer requirements. However, this restriction can help students learn
new technologies in more practical ways using the time available for the project.

The lectures conducted during the course should be attended so that all students can achieve a certain
level of understanding of relevant topics, especially software project management. Lectures given during the
course helped us understand the project management aspect of the project in a more concise way.

Our assigned supervisor for the project was of great help throughout the project. Therefore, every team
member should attend meetings with their supervisor and convey their problems and concerns openly.

12.5 Feedback on the Course

The course “Customer Driven Project”, TDT4290 is a practical course that require deep involvement of
students in terms of time and effort. The course offers a thorough learning experience in which all team
members have learned new things while performing the assigned tasks. The course not only imparts theoret-
ical knowledge of project management in form of lectures, but also implied practical knowledge of software
development methodologies and techniques regarding project development.

The learning process and practical experience are the most important aspects of the course. Along with
this, dealing with a customer in a real-life scenario is also a significant aspect of software development
projects. The project gives insight to students regarding how different customers can come up with their
diversified requirements and what can be done to handle these requirements with limited time and resources.
The experience also enables students to understand how important the involvement of all stakeholders in
the project is, and how vital customers engagement in the project is for a successful completion of the
project.

45

13 Future Work

The developed FMS lays the groundwork for easy additions of new forms. The FMS has a general work flow
for instantiating, viewing and signing various forms. All specific forms inherit from a general AbstractFormModel,
see ER-diagram in Figure 4. By using the AbstractFormModel, the other forms NTNUI uses that are not
implemented can easily be created and added to the system. See forms/models/coach form model.py in
the source code for an example.

13.1 Modification of Current System

The current MMS lacks a clean, systematic and versatile access control system. Every user should not be
able to see and instantiate every form. One possible way to distinguish the access rights to the users in the
system is to implement a system based on access levels where each form has an associated required access
level. This access in the system would then be a hierarchy where all users with the required access level (or
higher) would be able to instantiate a particular form. The users who are able to see an instantiated form
are the instantiator, signers and approvers. One possible hierarchy of access levels could be:

8: admin

7: HS

6: Group Leader

5: Cashier

4: Board

3: Trainer/Coach

2: Group Member

1: Member

0: Non-member

However, for an organization with the size like NTNUI, a more flexible and better way to implement access
control is via a role-based access control system [31]. Every user is a part of one or several different access
groups, and every resource in the system or on the site, are available for one or several of these access
groups. A role-based access control system has become the predominant model for advanced access control
for managing complex security administration in large networks [32].

We suggest that this is taken into consideration, and we urge the customer to make the implementation of
an access control system a priority to make further development easier.

13.2 Improvements of the FMS

The signatures related to a specific form are saved to the form object as a foreign key referencing the
correct UserModel. A better approach that the team purpose is that the signatures are saved in a separate
model with additional meta-data related to the signature. This includes:

• A foreign key to the signers UserModel.

• A hash string of the object signed, which makes the signature invalid if the content has changed after
the signature was made.

• A time stamp of the date and time when the signature was created

• A field that identify the type of the signature (high or low level)

A separate model for signatures would make the system more robust with strengthened security, mainly
because signatures are not only connected to a form, but the actual content of the form through a hash.

46

13.3 Suggestions for Future Implementation

Signature Level
The FMS facilitate functionality to support two levels of signature: high and low level. Low-level signature is
implemented as password authentication. The functionality for high-level signatures with either BankID or
manual paper signature is not implemented, but the system prohibits password authentication and inform
the user that a higher form of authentication is required if the form is configured to require a high-level
signature.

External Approval/Auditing
Functionality for external approval is implemented in the system, but there is currently no user interface for
it. This should be relative easy to implement by combining info view and sign.

Forms Validity
The date and time for when a form is instantiated and signed is stored in the database. However, as
mentioned in Section 10.3.5, it was discovered that a period-of-validity functionality would be desirable for
some forms. This would require adding a DateTimeField to the abstract form model if all the forms should
contain this functionality, or to the models of the specific forms that should require it. Logic to evaluate
whether or not a form is valid must also be implemented.

Minor Tweaks
During meetings with the customer, the team became aware that the different forms within NTNUI are
strongly related to the different sport groups. It may be desirable to relocate the forms tab to the groups
page.

As mentioned in Section 10.3.5, it was suggested that an extensive form sorting functionality should be
implemented.

13.4 Bugs

UIKit-limitations
Due to UIKit limitations, a form instantiator is only presented with the possibility to send a form to one
form signer at a time. It is, however, possible to create a form with multiple form signers if UIKit is disabled
for the form-signer selection element.

Multiple Form Signers
It should be noted that if a form with multiple form signers is created, the form signers’ input currently
manipulates the same form elements. For example, if there are two form signers in a specific coach form, and
these signers chooses specific a compensation, only the input of the last signer will be stored in the model.
To be clear, this bug is only a problem for forms with multiple form signer requiring user input.

Date Input
A user can specify a date older than today in a DateField and DateTimeField.

Date-picker
Date-picker does work in Chrome and Firefox, but does not work in Safari.

47

References

[1] Project Management Institute. A guide to the project management body of knowledge. 5th edition, 2013.

[2] Grude K.V. Haug T. Katagiri M. Andersen, E.S. and J.R. Turner. Goal directed project management.
2004.

[3] About ntnui. https://ntnui.no/front-page-english/info-about-ntnui/.

[4] NTNUI. Become a member - ntnui. https://ntnui.no/joinus/, 2018. [Online; accessed 07-Nov-2018].

[5] Writing your first django app, part 1. https://docs.djangoproject.com/en/2.1/intro/

tutorial01/.

[6] Andrew Powell-Morse. Waterfall model: What is it and when should you use it? 2016.

[7] Jon Atle Gulla Letizia Jaccheri, Anniken Holst. Compendium tdt4240 customer driven project. 2018.

[8] Don Wells. The values of extreme programming, 2009.

[9] Sahil Patel. Continuous integration: How to avoid integration hell. https://dzone.com/articles/

continuous-integration-how-0, 9 2014.

[10] Python Software Foundation. Python. https://python.com, 2018. [Online; accessed 02-Nov-2018].

[11] Django. Django 2.1 release notes. https://docs.djangoproject.com/en/2.1/releases/2.1/, 2018.
[Online; accessed 02-Nov-2018].

[12] Django. Django. https://www.djangoproject.com, 2018. [Online; accessed 02-Nov-2018].

[13] Docker Inc. Why docker? - docker. https://www.docker.com/why-docker, 2018. [Online; accessed
01-Nov-2018].

[14] GMBH TRAVIS CI. Travis-ci. https://travis-ci.com, 2018. [Online; accessed 02-Nov-2018].

[15] PyCQA. Bandit. https://github.com/PyCQA/bandit, 2018. [Online; accessed 06-Nov-2018].

[16] Git. https://git-scm.com, 2018. [Online; accessed 01-Nov-2018].

[17] GitHub Inc. Github. https://github.com, 2018. [Online; accessed 01-Nov-2018].

[18] Slack Technologies. Slack. https://slack.com, 2018. [Online; accessed 01-Nov-2018].

[19] Google LLC. Using google drive. https://www.google.com/drive/using-drive/, 2018. [Online;
accessed 01-Nov-2018].

[20] Writelatex Limited. About - overleaf, online latex editor. https://www.overleaf.com/about, 2018.
[Online; accessed 02-Nov-2018].

[21] Draw.io. Flowchart maker & online diagram software. https://www.draw.io, 2018. [Online; accessed
13-Nov-2018].

[22] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice. Addison-Wesley Profes-
sional, 3rd edition, 2003.

[23] Django introduction. https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/

Introduction. [Online; accessed 01-Nov-2018].

[24] The model-view-controller design pattern. https://djangobook.com/

model-view-controller-design-pattern/. [Online; accessed 01-Nov-2018].

[25] ”design philosophies”. https://docs.djangoproject.com/en/2.1/misc/design-philosophies/.
[Online; accessed 30-Oct-2018].

48

https://ntnui.no/front-page-english/info-about-ntnui/
https://ntnui.no/joinus/
https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://dzone.com/articles/continuous-integration-how-0
https://dzone.com/articles/continuous-integration-how-0
https://python.com
https://docs.djangoproject.com/en/2.1/releases/2.1/
https://www.djangoproject.com
https://www.docker.com/why-docker
https://travis-ci.com
https://github.com/PyCQA/bandit
https://git-scm.com
https://github.com
https://slack.com
https://www.google.com/drive/using-drive/
https://www.overleaf.com/about
https://www.draw.io
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction
https://djangobook.com/model-view-controller-design-pattern/
https://djangobook.com/model-view-controller-design-pattern/
https://docs.djangoproject.com/en/2.1/misc/design-philosophies/

[26] Philippe Kruchten. Architectural blueprints—the “4+1” view model of software architecture. https:

//www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf, 1995. [Online; accessed
13-Nov-2018].

[27] Django. Security in django — django documentation — django. https://docs.djangoproject.com/

en/2.1/topics/security/, 2018. [Online; accessed 01-Nov-2018].

[28] Microsoft. The stride threat model. =https://docs.microsoft.com/en-us/previous-versions/commerce-
server/ee823878(v=cs.20), 2009.

[29] Jakob Nielsen. Estimating the number of subjects needed for a thinking aloud test. International journal
of human-computer studies, 41(3):385–397, 1994.

[30] Bruce. W Tuckman. Developmental sequence in small groups. 1965.

[31] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access control models. Com-
puter, 29(2):38–47, 1996.

[32] National Institute of Standards and Technology. Role based access control — csrc. https://csrc.

nist.gov/projects/role-based-access-control, 2018. [Online; accessed 05-Nov-2018].

49

https://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf
https://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf
https://docs.djangoproject.com/en/2.1/topics/security/
https://docs.djangoproject.com/en/2.1/topics/security/
=
https://csrc.nist.gov/projects/role-based-access-control
https://csrc.nist.gov/projects/role-based-access-control

A Evolution in Requirements

A.1 Evolution in user stories

Final version of user stories is shown in Table 5. Table 26 shows the evolution of user stories. It is the last
version that is used in the final user stories. The initial user stories were created the 6th of September 2018.
Table 25 shows when changes in user stories were made.

Date What happened
6th of September 2018 Initial stories
18th of September 2018 Modifying US1-v1 to US1-v2
6th of November 2018 • Modifying US1-v2 to US1-v3

• Merging US7-v1 and US8 to US7-v2

6th of November 2018 Removing US8

Table 25: The dates for the changes in user stories

ID User stories
US1-v1 As a form-signer, I should be able to read and fill out a form in both Norwegian and English
US1-v2 As a form-signer, I should be able to read and fill out a form in Norwegian
US1-v3 As a form-signer, I should be able to fill out a form in Norwegian
US2 As a form-owner I can require that a form needs external approval to be completed

US3-v1 As a user with the appropriate privileges, I should be able to see available forms
US3-v2 As a user with the appropriate privileges, I should be able to see both signed and unsigned

forms
US4 As a form-owner with form instantiation privileges I should be able to instantiate a form
US5 As a form-owner I should be able to create a new form
US6 As a form-owner, I should be able to make a form available for signing for relevant form-

signers.
US7-v1 As a form-owner I should be able to see the current status of my forms
US7-v2 As a form-owner I should be able to see all my instantiated forms and their status

US8 As a form-owner I should be able to see all my instantiated forms
US9 As a form-signer I should be able to view and fill out content in a form
US10 As a form-signer I should be notified when a form is available to be signed
US11 As a form-owner I should be notified upon form completion
US12 As a form-signer I should be able to sign a form using password when required
US13 As a form-signer I should be able to sign a form using BankID when required
US14 As a form-signer my access-rights to the system should change upon the completion of

specific forms.

Table 26: Evolution of user stories

A.2 Evolution in functional requirements

The fourth and final version of functional requirements is shown in table 6. The first version of the functional
requirements is shown in table 27. After talks with our supervisor, the functional requirements were changed,
see table 29. Table 28 show removed requirements from the second version to the third version. The third

i

version is shown in table 31, and table 30 shows changed made during the third version of the functional
requirements.

Functional requirement (Version 1)
System
All forms are saved in the database
All instantiated forms are saved in the database
Send email requesting signing to form-signers on form instantiation
Send email to form-owner on form completion
Communicate with 3rd party BankID entity
Change access rights on form completion
Send email to form-signer about updated account on form completion
User
Display forms available for instantiation
Instantiate an already defined form
Add user or groups to sign form on instantiation
Create form - add fields and text - add validation-rules
Input to define whether a form needs external approval
Form-owner
Display instantiated forms
Display number of people that have signed each instantiated form
Display number of people that have not yet signed each instantiated form
Send mail as reminder to sign form
Form-singer
Fill out and show forms both in Norwegian and English
Show appropriate error message if fields are filled out incorrectly.
Display password field to sign
Show appropriate error message if password is wrong
Password should not be viewable at point of entry
Display bankID to sign form

Table 27: Version 1 of the functional requirements. Created 6th of September 2018

Date What happened
18th of September 2018 Removed from version 2 to version 3

Table 28: The dates for the changes in functional requirement version 2

A.3 Evolution in non-functional requirements

Final version of non-functional requirements is shown in Table 7. Table 33 shows the evolution of non-
functional requirements. It is the last version that is used in the final non-functional requirements. The
initial non-functional requirements were created the 6th of September 2018. Table 32 shows when changes
in non-functional requirements were made.

ii

ID Functional requirements version 2
FR12 The system should contain a general “trustee statement”-form (Tillitsvalgts erklæring) in

the database.
FR3 A user should be able to view all their available forms given their access rights

- The system should give form-owners the ability to request signing of a trustee statement by
selected form-signer.

FR11 Upon requesting the signing of a trustee statement, the system should automatically notify
the selected users by email.

FR7 The system should automatically send an email to form-signer(s) requesting signing of a
trustee statement form.

FR10 Upon receiving a sign-request, the system should present the trustee statement to form-
signer along with the ability to sign the form.

FR4 The system should contain functionality to sign forms using username and password.
- The system should contain functionality to sign forms using BankID provided by Posten.
- The system should give users the ability to sign a “trustee statement”-form by BankID

provided from Posten
- The system should give users without BankID the ability to sign a “trustee statement”-form

with user password
FR2 The system should save a signed “trustee statement”-form in the database

- Upon signing the trustee statement, the system should automatically notify the the form-
owner(s) by email

FR9 The system should automatically change form-signers access rights when a “trustee
statement”-form is signed. (Access rights must be defined)

FR5 The system should allow a form-owner to specify which user receives a signing request.

Table 29: Functional requirements version 2. Created 13th of September 2018

What happened Date
Modified requirement from
version 2 to version 3

18th of September 2018

Added requirement 18th of September 2018
Removed requirement 9th of October 2018
Added requirement 23rd of October 2018

Table 30: The dates for the changes in functional Requirements version 3

B Testing

B.1 User Test Tasks

The table was the basis for the tasks presented to the participants during user testing. Only the ”Task”
column was presented to them. The text was translated to Norwegian before the test.

iii

ID Functional requirements version 3
FR1 The system should contain a modular abstract form that can be inherited by other forms
FR2 The system should save signed forms in the database
FR3 A user should be able to view all their available forms with the required access rights
FR4 The system should contain functionality to sign forms using password.
FR5 The system should allow a form-owner to specify which user receives a signing request.
FR6 The form-owner should be able to view all the forms they have instantiated and the status

of these forms
FR7 Upon signing a form, the system should notify the the form-owner(s) as defined by the form’s

notification policy
FR8 The forms can be customized for higher order authentication
FR9 After all form signers have signed the form, the access rights of relevant users should be

changed automatically if this is specified by the form during form-creation
FR10 Upon receiving a sign-request, the system should present the form to form-signer along with

the ability to sign the form.
FR11 The system should be able to notify actors on form instantiation if specified in the form’s

notification policy
FR12 The system should contain a general “Team contract”-form (Teamkontrakt) in the database.
FR13 Presidents/Leaders in a group should be able to instantiate forms to be signed by members

in that group.

Table 31: Version 3 of functional requirements. Created 18th of September 2018

What happened Date
Initial requirements 6th of September 2018

Removed requirements 13th of September 2018
Added requirements 13th of September 2018

Modified requirements 18th of September 2018
Added requirements 23rd of October 2018

Table 32: The dates for the changes in non-functional requirements

ID Non-functional requirements
NFR1 The system must be written as a Django-app. (Django 2.1)

NFR2-v1 The code should have few, but large, integration tests and pass every test.
NFR2-v2 The code should have one or two integration tests and pass every test.
NFR3-v1 The code should be thoroughly user tested.
NFR3-v2 The code should be user tested.
NFR4-v1 The code should be well documented, both in code and at GitHub wiki.
NFR4.v2 The code should be documented, both in code and at GitHub wiki.

There should be none high-vulnerability, high-likely risks regarding the security of the system
NFR5-v1 The system should be available in both Norwegian and English
NFR5-v2 The system should be available in Norwegian

NFR6 UIKit should be the main css-library for styling.
NFR7 All forms should use a Cross-Site Request Forgery (CSRF) token.

Table 33: Evolution of non-functional requirements

iv

P
re

p
a
ra

ti
o
n

(d
o
n

e
b
y

u
s)

T
a
sk

(s
a
id

o
u

t
lo

u
d

to
th

e
p

a
rt

ic
ip

a
n
t

a
n

d
p

re
se

n
te

d
b

e
si

d
e

th
e
m

in
w

ri
tt

e
n

fo
rm

)
G

o
a
l

(w
h

a
t

w
e

e
x
p

e
c
t

th
e

p
a
rt

ic
ip

a
n
t

to
a
ch

ie
v
e
)

S
en

d
ou

t
a

fo
rm

to
L

es
li

e
K

n
op

e.

L
og

in
as

L
es

li
e

K
n

op
e.

B
1

Y
ou

a
re

L
es

li
e

K
n

o
p

e
a
n

d
h

av
e

re
ce

iv
ed

a
n

em
a
il

th
a
t

yo
u

h
av

e
a

fo
rm

fr
o
m

yo
u

r
g
ro

u
p

le
a
d

er
th

a
t

y
o
u

ca
n

fi
ll

o
u

t.
F

in
d

m
o
re

in
fo

rm
a
ti

o
n

a
b

o
u

t
th

e
fo

rm
.

N
av

ig
a
te

to
“
a
k
ti

ve
sk

je
m

a
”

a
n

d
o
p

en
th

e
fo

rm
.

B
2

Y
ou

’v
e

re
a
d

th
e

co
n
tr

a
ct

a
n

d
yo

u
a
re

re
a
d

y
to

fi
ll

it
o
u

t.
F

in
d

ou
t

h
ow

.

F
il

l
ou

t
in

fo
rm

a
ti

o
n

:
P

os
is

jo
n

:
T

re
n

er
K

om
p

en
sa

sj
o
n

:
T

re
n

in
g
sk

o
rt

S
ta

rt
d

a
to

:
0
1
.1

1
.2

0
1
8

P
re

ss
“
N

es
te

”
a
n

d
fi

ll
o
u

t
n

ec
es

sa
ry

fi
el

d
s.

B
3

N
ow

th
a
t

yo
u

’r
e

h
a
p

p
y

w
it

h
w

h
a
t

yo
u

fi
ll

ed
o
u

t,
yo

u
ar

e
re

a
d

y
to

si
g
n

.
P

le
as

e
si

g
n

th
e

fo
rm

.
Y

o
u

ca
n

ch
o
o
se

a
n
y

o
f

th
e

sa
ve

d
p

a
ss

w
o
rd

s.

S
ig

n
th

e
fo

rm
b
y

p
re

ss
in

g
“
N

es
te

”
a
n

d
co

n
fi

rm
p

a
ss

w
o
rd

.

B
4

Y
ou

a
re

u
n

su
re

w
h

et
h

er
th

e
d

a
ta

yo
u

p
u

t
in

to
th

e
fo

rm
is

co
rr

ec
t.

C
h

ec
k

if
th

e
d

a
ta

is
co

rr
ec

t.
F

in
d

th
e

fo
rm

in
a
rc

h
iv

e
a
n

d
sc

ro
ll

d
ow

n
to

in
p

u
t

fi
el

d
s.

L
og

in
as

R
on

S
w

an
so

n
.

D
el

et
e

th
e

fo
rm

cr
ea

te
d

in
th

e
p

re
v
io

u
s

ta
sk

s.

L
1

Y
ou

a
re

n
ow

R
o
n

S
w

a
n

so
n

-
th

e
le

a
d

er
of

P
ar

k
a
n

d
R

ec
re

a
ti

o
n

s
g
ro

u
p

.
Y

ou
ar

e
to

se
n

d
o
u

t
a

M
id

le
rt

id
ig

A
n

se
tt

el
se

fo
rm

to
L

es
li

e
K

n
o
p

e.

N
av

ig
a
te

to
“
sk

je
m

a
“

th
en

“
se

n
d

sk
je

m
a
”
.

S
en

d
o
u

t
M

id
le

rt
id

ig
A

n
se

tt
el

se
to

L
es

li
e

K
n

o
p

e.

L
2

S
om

e
ti

m
e

h
a
s

p
a
ss

ed
a
n

d
yo

u
’r

e
w

o
n

d
er

in
g

w
h

at
’s

th
e

st
a
tu

s
o
f

th
e

fo
rm

.
P

le
as

e
ch

ec
k

th
e

st
a
tu

s.

C
o
n

fi
rm

th
a
t

it
sa

y
s

“
ik

k
e

si
g
n

er
t”

n
ex

t
to

L
es

li
e

K
n

o
p

e
in

“
u

ts
en

d
te

sk
je

m
a
”

S
ig

n
th

e
fo

rm
as

L
es

li
e

K
n

op
e

an
d

lo
g

in
ag

ai
n

as
R

on
S

w
an

so
n

.

L
3

L
es

li
e

K
n

o
p

e
sh

o
u

ld
h

av
e

si
g
n

ed
th

e
fo

rm
b
y

n
ow

.
C

h
ec

k
if

th
a
t’

s
tr

u
e.

N
av

ig
a
te

to
“
a
rk

iv
u

ts
en

d
te

sk
je

m
a
”

a
n

d
co

n
fi

rm
th

a
t

L
es

li
e

K
n

o
p

e
h

a
s

si
g
n

ed
.

L
4

Y
ou

’r
e

w
o
n
d

er
in

g
w

h
et

h
er

th
e

fo
rm

w
a
s

fi
ll

ed
o
u

t
co

rr
ec

tl
y.

C
h

ec
k

th
a
t

“
ko

m
p

en
sa

sj
o
n

”
is

“
tr

en
er

”
.

O
p

en
th

e
fo

rm
a
n

d
sc

ro
ll

d
ow

n
to

th
e

in
p

u
t

fi
el

d
s.

U
n

d
er

st
a
n

d
th

e
in

fo
rm

a
ti

o
n

p
re

se
n
te

d
.

v

B.2 User Test Introduction

This is the basis for the script that we used to introduce participants to the user test.

After welcoming the participants, they will explained the form and the purpose of the test. The purpose is
to discover possible deficiencies in the prototype, so that it can be improved. We are not testing the ability
of particular participants to work with the system as it is. Any possible failures will be attributed to the
implementation in the purpose of future improvement. This test is voluntary so the participants can stop
the test if they feel the need to do so. The system has not been user tested in such a manner before, so it
is presented in its current work-in-progress state. We need the participants to say out loud their thought
process during testing, so that we can more easily analyze possible difficulties. The participants should solve
the task without our help, unless they get completely stuck or are about to give up. The general idea of the
prototype and the tasks will be quickly explained before the test starts. We will tell the participant to say
out loud when they think they are finished with a task. The participant will asked if they have any concerns
and the test will begin.

We will present the tasks out loud to the participants and also they will be presented in written form on a
piece of paper next to them. The timer should be started right after the task is said out loud and stopped
after the participant says they are finished with a task. After all the tasks are solved we will ask the
participant to freely express their thoughts about the prototype in general. We can ask them:

Did you find the system intuitive?

Was there anything that confused you?

Do you think some things could have been done better?

After we are finished with a participant, the prototype should be reset.

B.3 User Test In-depth Analysis

The most prominent observation was that the participants felt more connected to their respective sport
groups than to NTNUI. This became apparent immediately at the start of every test run in 4 out of 6 cases.
The participants were navigating to the group for which they were required to send a form, even though
there was a button in the same screen which leads users to form functionality. This mindset can be taken
into account through adding the same button to the group navigation bar.

A significant flaw in the test layout was that the system was tested with only one single form instance present
at a time. This influenced the test validity, because the deployed system might show even hundreds of form
instances at a time. The test was carried out with only one form instance at a time. The effect of this
could be observed in participants’ behaviour when met with the leader perspective. The participants were
sometimes navigating randomly between multiple views until they found one which had a form instance in
it.

Most participants did not have any extensive opinions about the system. An exception was one test subject,
a group president, who looked beyond the current state of the product during the follow-up discussion and
gave us many recommendations. One issue this test subject brought up was that the form lists should have
extensive functionality regarding form sorting and restricting the query set. Considering that the customer
asked us to implement minimal front end functionality, this is a valuable input to future work. Another
thing was that a form should include a period during which it is valid. This would allow for a separation
of valid and expired forms to increase visibility. This insight was enlightening due to team’s lack of contact
with NTNUI members who handle a large number of forms.

Some participants were shortly confused by the moving of form instances from the active view (figure 18) to
the completed view (figure 20) after they are signed. A suggestion is to have both the signed and non-signed

vi

forms in the same view with non-signed at the top, combined with the sorting/restricting functionality
described above. The division based on incoming/outgoing forms might need reworking, because some of
the participants expected to receive a signed form, thus checking the incoming list for signed forms.

The signing status of a form is currently shown next to the signers name. It might be more convenient to
have a separate column for the status or use bold text or colours/icons. Multiple participants found the
browser-specific date picker to be cumbersome. This is something that the team had little control over,
and it might be good to find a better solution in the future. To give the users feedback about the different
modules they might find themselves in, the buttons in the top navigation bar (top of figure 16) should be
visibly active. This might not be relevant if the navigation bar is reworked at a later date.

C Views

C.1 Final product

This section gives an overview of the different views for the end user.

Figure 16: The main page of the system that was implemented by the customer.

vii

Figure 17: View of the regular user perspective containing received forms that have been signed.

Figure 18: Leader perspective view containing incoming forms that need to be signed by the current user.
Analogical to the regular user view in Figure 15.

viii

Figure 19: Leader perspective view containing outgoing forms that need to be signed by the receiver.

Figure 20: Leader perspective view containing incoming forms that were signed by the current user.

ix

Figure 21: Leader perspective view containing outgoing forms that were signed by the receiver.

C.2 Paper prototype

In the planning phase of the project the prototypes were created to guide the developers and give the
developers an impression of what the system would be capable of. In the prototypes we used the terms
”Approved forms” and ”Active forms”. ”Approved forms” are forms that the user have signed and have
been approved. ”Active forms” are forms that needs the user’s signature.

x

C.2.1 Form-owner perspective

Opprett et nytt skjema

Velg en gruppe

Ingen gruppe valgt

Opprett skjema Utsendte skjemaer Aktive skjemaer Godkjente skjemaer

Figure 22: Paper prototype view that shows the first step in the process of sending a form.

Opprett et nytt skjema

Velg et skjema

Ingen skjema valgt

Velg en gruppe

Basketball

Opprett skjema Utsendte skjemaer Aktive skjemaer Godkjente skjemaer

Figure 23: Paper prototype view that shows the second step in the process of sending a form.

xi

Opprett et nytt skjema

Velg et skjema

Velg mottaker av skjema

Tillitsvalgterklæring

Velg mottaker av skjema

Ingen mottaker valgtIngen mottaker valgt

Velg en gruppe

Basketball

Opprett skjema Utsendte skjemaer Aktive skjemaer Godkjente skjemaer

Figure 24: Paper prototype view that shows the third step in the process of sending a form.

Opprett et nytt skjema

Velg et skjema

Velg mottaker av skjema

Tillitsvalgterklæring

Velg mottaker av skjema

Thomas Halvorsen

Send skjema

Velg en gruppe

Basketball

Opprett skjema Utsendte skjemaer Aktive skjemaer Godkjente skjemaer

Figure 25: Paper prototype view that shows the fourth step in the process of sending a form.

xii

Skjema er sendt til Thomas Halvorsen!
Klikk her for å opprette nytt skjema

Opprett skjema Utsendte skjemaer Aktive skjemaer Godkjente skjemaer

Figure 26: Paper prototype view that shows the fifth step in the process of sending a form.

Utsendte skjema
Her vises en oversikt over skjemaer du har sendt ut

Skjema Gruppe Til Signert

Tillitsvalgtserklæring Basketball Thomas Halvorsen Nei

Filter

Vis kun usignerte skjermaer

Opprett skjema Utsendte skjemaer Aktive skjemaer Godkjente skjemaer

Figure 27: Paper prototype view that shows the forms sent and filter functionality.

xiii

Aktive skjemaer
Skjemaer som krever din signatur

Opprett skjema Utsendte skjemaer Aktive skjemaer Godkjente skjemaer

Du har ingen aktive skjemaer for øyeblikket

Figure 28: Paper prototype view that shows the active forms.

Godkjente skjemaer
Skjemaer som du tidligere har signert og er godkjent

Skjema Gruppe Fra Signeringsdato

Tillitsvalgtserklæring Basketball Rektor 02/10/18

Opprett skjema Utsendte skjemaer Aktive skjemaer Godkjente skjemaer

Figure 29: Paper prototype view that shows the approved forms.

xiv

C.2.2 Form-signer perspective

Aktive skjemaer
Skjemaer som krever din signatur

Skjema Gruppe Fra Signert

Tillitsvalgtserklæring Basketball Rektor NTNUI Nei Se og signer

Aktive skjemaer Godkjente skjemaerGodkjente skjemaer

Figure 30: Paper prototype view that shows the active forms.

Tillitsvalgtserklæring
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum.

Jeg aksepterer denne tekstenx

Videre

Figure 31: Paper prototype view that shows the first step in the process of filling a form.

xv

Passord

Skriv inn ditt NTNUI-passord
for å signere dette dokumentet

Signer med passord

Figure 32: Paper prototype view that shows the signing step in the process of filling a form.

Aktive skjemaer
Skjemaer som krever din signatur

Du har ingen aktive skjemaer for øyeblikket

Aktive skjemaer Godkjente skjemaerGodkjente skjemaer

Figure 33: Paper prototype view that shows the active forms. The list is empty.

xvi

Godkjente skjemaer
Skjemaer som du tidligere har signert og er godkjent

Skjema Gruppe Fra Signeringsdato

Tillitsvalgtserklæring Basketball Rektor 16/10/18

Aktive skjemaer Godkjente skjemaer

Figure 34: Paper prototype view that shows the approved forms.

D Reports

This section covers the status reports that were sent to supervisor(status report),meetings with the customer,
and team contract.

D.1 Customer feedback

Author: Anders Kirkeby, representative of the NTNUI IT Committee

With around 12.000 members, NTNUI is considered the largest sports association in Norway, organising
more unique sports than the Norwegian Sports Federation (NIF). Being the university’s sports association
the organisation is run entirely by students, and has been since its inception over 100 years ago.

In 2017 the NTNUI also held a spot as one of the customers of the customer driven project. The resulting
CRM system has since been worked on by the volunteers at NTNUI Sprint (NTNUI’s IT Committee). The
feedback from other student sports association has been great and other organisations (like NIF) is now
turning towards NTNUI for feedback on modernising sports organisations in Norway.

To help alleviate some of the paperwork that unavoidably comes with a hundred year old organisation, the
CRM system needed to be extended with a form module where users can fill out, sign and manage paperwork
that would otherwise be handled physically. The student group were tasked with creating this module by
extending the existing CRM-solution. Integrating with the pre-existing system set precedence for which
technologies the students would need to build the system in. Frequent meetings were therefore held in the
beginning of the project to alleviate friction and potential unclear requirements. Due to the communication
pipeline between the student group and the IT-committee we agreed to omit using ”user stories” and instead
focus more on ”functional- and non-functional requirements”.

As the project developed we realised the scope would need to be reduced in order to ensure the robustness
of the system. Our team worked along with the student group to find common grounds and remove any low

xvii

priority requirements. The group held a lot of good viewpoints on the functionality of the system, which in
turn helped us discover previously unseen shortcomings in the old system. Not blindly accepting all provided
requirements but giving constructive criticism where relevant has undoubtedly increased the overall value of
the end product.

The student group has delivered on all key aspects of the product order, in terms of both functional- and
non-functional requirements. They have developed a product of high quality that can easily be incorporated
into the existing solution, and accommodates our demand for modularity. Overall we are extremely satisfied
with the final product and thankful for the collaboration with both IDI and the student group.

D.2 Summary customer meetings

xviii

TDT4290: First customer meeting resume 28.08.2018

Group 6

August 30, 2018

1 Problem

NTNUI’s management system today mainly consists of non-digital solutions when it comes to form manage-
ment and control over various members rights. NTNUI wants to improve the member management system
to increase efficiency and to show a higher level of professionalism. As of today, the distribution of rights
each member has is done manually. There is also a lack of control and oversight over the distribution of
these rights. When NTNUI members take on different responsibilities, they have to sign a declaration of
these responsibilities. As of today, this is also done manually. This manual labour is both resource- and
time-consuming.

2 Expected functionality

Expected functionality in (approx.) prioritized order:

1. Possibility to sign predefined (’hard coded’) forms with and without changes in access rights

• Automatically send a ”Tillitsvalgterklæring” to new board members that they are required to
sign.

2. Authorization of board changes by the group admins. This authorization should be signed.

3. External auditing (Admin/HS(?) approval) for board changes in the different NTNUI-groups.

4. Bonus: Possibility to fill out and signing other predefined forms, like travel expenses form, disbursement
form, internal auditing form (one for accounting, and one for GDPR)

5. Bonus: Possibility to create, fill out and sign generic forms.

3 Requirements by NTNUI

The solution must be integrated with existing member system. The existing system is developed as a Django
application, so our solution must also be developed as a Django application with limited external libraries.
Due to expected merging of solutions with the existing system and further post project development, the
code must be extensively documented both in-code and using Github Wiki. This includes assumptions and
choices made when developing. The code should also be modular. The solution must be thoroughly tested
using user testing to ensure usability by people from non-technical backgrounds. It should be mobile friendly
and be implemented using both Norwegian and English. Throughout the development stage of the solution
the code will be merged with the NTNUI code base. The code should be of high quality and security is
important.

1

4 Expectations to NTNUI

NTNUI made several promises regarding access and resources provided, this has led to the following expec-
tations:

• Test server running on AWS

• Establishing common work platforms: Github, Slack, Google team drive (already fulfilled)

• Provide test subjects for user testing

• Provide high availability on Slack and in person when needed

• Provide a forked repository from main code base on Github

• Provide an authentication service using BankID (Still looking at possible providers)

2

Summary of Meeting with Customer - 9th of october 2018

1. We agreed upon an implementation of the Abstract Form with the following
functionalities:

a. Who can instantiate a form
i. We agreed that the instantiator is a user with role president within a

group
b. Who can sign form

i. Users in a group
c. Who can view form

i. Signer and instantiation as well as the approver
d. Who should be notified using send mail (Django)

2. Notification should be generated via email for form signer on form instantiated
and form owner when form is signed by form signer.

3. Modularity of forms is required for future development.
4. Form owner can be a user with a role “President” and part of administration with

option for instantiating and viewing forms for that group
5. Implementation of access right is out of scope, however role-based access rights

is suggested for future work.
6. We agreed that the mock-data we have received should be sufficient now given

that access-control is out of the scope
7. We agreed that the customer should respect the deadlines agreed upon, and we

Group 6 should be clearer and give tasks written and with a due-date, preferably
on Asana

8. NTNUI will provide people for a user-test, most likely in the beginning of
November

9. NTNUI said that all functional requirements with a priority ‘low’ will be considered
as Future Work.

10.Terminology:
a. Group = A physical collection of people, could be a sportsgroup (Including

all members of that sport) or could be a administrative group such as
Hovedstyret

b. Form-owner = form-instatiator = User with role “President”
c. Form-signer = a user in the group of the form-owner that has been

requested to sign a form

D.3 Important status reports

xxii

Status report - 23. October

Since last status report

● Good progress on the development

○ Many of the functional requirements in our scope is now implemented

● Slow progress on the report

○ After the group leader meeting last week, we discovered we were far behind

on the report writing. We need to step up. We have made some changes in

the group to increase the report writing performance. Last Thursday more

team members were assigned to primarily focus on the report.

Customer meeting

● The customer confirmed which functional requirements are done. All functional

requirements are considered done.

● The customer was happy with the demo of the product and the code review and had

feedback on our project. They had a minor change they wanted us to do:

○ When you sign a document and click sign the user is sent to “Arkiv” and not

“Aktive skjema” - This is completed

● During the demo the customer gave some tips on how to improve our code, if we

have time, we may improve our code by following these tips

● After our project is finished the customer wanted a list of what they can to do next.

This we’ll be written about extensively covered in our report.

● The customer will provide at least six users for user testing next week. The testers

will be non-technical as well as technical.

● They also gave best practices for how to document the code and write

documentation on GithubWiki.

The next weeks

● The implementation of the project will be finished by next week, and then everyone

will work on the report. The group members will work with report sections that are the

most relevant to them, for example people who have written integration testing will

write the testing part of the report.

● User testing will be done 1st of November

○ If there are minor feedback that is possible to change fast, it may be

implemented.

○ Larger changes that are difficult to implement will be considered future work

Status report - Week 44

This week we have mainly been working with report writing and user testing.

On Thursday we held a user test for six users selected by NTNUI. We got a lot of good
feedback from the users, both in terms of what was good about the system and what was
bad of the system. The feedback we collected is now being analysed and the results will be
put into the report together with relevant information about the user test. As a result of the
feedback, some small changes will be done to the code, but all of the bigger suggestions for
improvements we got from the user testing will be considered future work since we do not
have time to implement it.

When it comes to the report, we have made great progress and many of the suggestions you
mentioned in the meeting last Tuesday are now integrated into the report.

D.4 Team contract

xxv

Team contract KPRO

Group 6:
Jonathan Linnestad

Anders Salvesen
Erik Liodden

Siren Finvik Johansen
Jan Burak

Kristian Thoresen
Maria Iqbal

August 2018

1

1 General

• Democratic decision, by tie Siren decides

• Ask for help, there are no stupid questions. If you are stuck ask.

• If you say you will complete a task within a certain time and you get delayed, inform the team.

• Cake punishment if you are substantially late to work hours or if late to customer/supervisor meetings

2 Routines

• Work together Tuesday 12:15-16:00 and Thursday 10:15-16:00

• When needed and team agrees we have room on Tuesdays until 20:00 and Thursday until 18:00

• Be on time. If you cannot attend or are delayed, inform the other group members.

• Hours spent must be registered after each session.

3 Meetings

• Mail with time and location of meeting in good time before said meeting

• Meet on time and read agenda for meeting before meeting

4 Coding guidelines

• Everyone should su�ciently comment their code.

• Follow code style from NTNUI

• Do not commit IDE or environment specific files

• Code review, at least one person from team needs to approve code

• Linting, decide on common linting style

• Keep functions simple and atomic within what is possible

• Write variable and function names that are as self-describing as possible

• Test what makes sense to test

5 Definition of done

• When is a task done. Tested, code reviewed, and user story is done

• When is a User Story, when NTNUI accepts it as done, and user testing has been conducted where
needed

6 Crisis management

• If a group member gets sick inform supervisor

• Inform NTNUI immediately about the issue

2

7 Roles

• Team Leader: Siren

• Product Owner/Customer: NTNUI

• Test manager: Jonathan

• Quality manager: Jan

3

ID Unique
ID

Task
Mode

Task Name Duration Start Finish

1 1 Requirement Gathering
and Analysis

16 days Tue 8/28/18 Tue 9/18/18

2 6 PreStudy/ Learning 12 days Tue 9/18/18 Wed 10/3/18
3 11 Analysis and Design 4 days Wed 10/3/18 Mon 10/8/18
4 15 Development Abstract

Forms
14 days Mon 10/8/18 Thu 10/25/18

5 19 Integration of Actions 5 days Thu 10/25/18 Wed 10/31/18
6 23 User Testing 5 days Wed 10/31/18Tue 11/6/18
7 24 Unit and Integration

Testing
3 days Tue 11/6/18 Thu 11/8/18

8 25 Report Writing 11 days Thu 11/8/18 Thu 11/22/18

S S M T W T F S S M T W T F
Aug 12, '18 Sep 2, '18 Sep 23, '18 Oct 14, '18 Nov 4, '18 Nov 25, '18

Task

Split

Milestone

Summary

Project Summary

External Tasks

External Milestone

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

Deadline

Progress

Page 1

Project: Gant Chart
Date: Wed 11/14/18

Figure 35: Summary of Gantt Chart

D.5 Gantt Chart

An outline of the Gantt Chart is shown in figure 35. The complete chart can be found here: http://folk.
ntnu.no/eriklio/gantt_chart.mpp.

E Other

E.1 Working Hours

Figure 36 shows the hours each team member spent on the project. Week 47 is an estimate of how much
time the team will spend preparing the presentation and video that is to be delivered. Figure 37 shows the
total time spent on each phase, and is the absolute data that the pie chart in Figure 2 is based on.

xxix

http://folk.ntnu.no/eriklio/gantt_chart.mpp
http://folk.ntnu.no/eriklio/gantt_chart.mpp

Navn Uke 35 Uke 36 Uke 37 Uke 38 Uke 39 Uke 40 Uke 41 Uke 42 Uke 43 Uke 44 Uke 45 Uke 46 Uke 47 Total
Jonathan Linnestad 15 11 13 10 10 13 10 13 10 19 25 25 25 199
Erik Lodden 15 11 6 11 14 23 15 14 15 15 35 35 19 228
Anders Salvesen 15 11 13 11 9 19 15 14 19 15 30 38 19 228
Jan Burak 15 16 6 20 19 24 18 23 19 15 34 25 19 253
Kristian Bjørn Thoresen 15 11 5 13 9 21 10 15 18 19 30 35 19 220
Siren Finvik Johansen 15 6 16 13 15 3 4 21 20 23 45 41 19 241
Maria Iqbal 0 11 10 14 6 18 6 13 5 18 19 20 16 156

sum: 1525

Figure 36: Working Hours per team member per week

Estimated
Working Hours

Report Writing 460
Analysis and Design 170
Requirement Gathering 190
Development 410
Testing 75
Learning Django 220

Sum: 1525

Figure 37: Estimated Hours the team spent on the different phases.

xxx

	List of Figures
	List of Tables
	Introduction
	Project Scope
	Stakeholders
	Report Outline

	Pre-Study
	Organization
	Existing Workflow of the Organization
	Current System - The Member Management System
	Planned Solution - The Form Management System
	Comparison between the Current System and the Planned System

	Requirement Analysis
	User Stories
	Functional Requirements
	Non-Functional Requirements
	Changes in Requirements

	Project Planning
	Project Plan Overview
	Team Organization
	Project Schedule
	Communication
	Documents
	Project Work Organization
	Integration of Waterfall with other Methodologies
	Working Hours
	Meetings
	Keeping Time

	Quality Assurance
	Time of Response
	Code Standards
	Code Review and Version Control
	Templates and Standards
	Testing

	Risk Management
	Risk Table Legend
	Risk Table
	Risk Matrix
	Risks encountered during the Development Phase

	Methodologies
	Adopting the Waterfall Methodology
	Waterfall Methodology in the Project
	Adaptions to the Waterfall Methodology
	Technology and Frameworks

	Tools
	Version Control Management
	Communication and Documentation
	Graphics and Figures

	Architecture and Design
	Architectural Drivers
	Architectural and Design Patterns
	Model-View-Template (MVT)
	State pattern

	Architectural Tactics
	Modifiability Tactics
	Security Tactics
	Usability Tactics

	Entity Relation Model
	The 4+1 Architectural View Model
	Architectural Views
	Use Cases

	Security
	Security Features in Django
	Abuse Cases
	Static Security Analysis

	Testing
	Unit and Integration Testing
	Automated Functional Testing
	Usability Testing
	Test Preparation
	Test Subjects
	Test Tasks
	Test Proceedings
	Test Analysis

	Final Product
	User Guide
	Installation Guide

	Group Reflection and Evaluation
	Description of Group Dynamics
	Reflection on Group Dynamics
	Customer Relations
	What Future Students Should Know
	Feedback on the Course

	Future Work
	Modification of Current System
	Improvements of the FMS
	Suggestions for Future Implementation
	Bugs

	References
	Evolution in Requirements
	Evolution in user stories
	Evolution in functional requirements
	Evolution in non-functional requirements

	Testing
	User Test Tasks
	User Test Introduction
	User Test In-depth Analysis

	Views
	Final product
	Paper prototype
	Form-owner perspective
	Form-signer perspective

	Reports
	Customer feedback
	Summary customer meetings
	Important status reports
	Team contract
	Gantt Chart

	Other
	Working Hours

