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Abstract

I have simulated movement of particles due to biased Brownian motion in a flashing ratchet potential. The result
agree with prediction from experiment [J. S. Bader, et al. Proc. Natl. Acad. Sci. USA. 96(23):13165–13169, Nov. 9,
1999]. Particles of different size had different drift velocity and this can therefore be used as a method of separating
different particles in a solution.

1. Introduction

Separation of particles of different size in a solution
could be of interest in many applications. For example
sorting cells by size in a biological sample. There are sev-
eral ways to accomplish this. One of them is by applying a
flashing ratchet potential. Here I take a look at separation
of DNA molecules of different size by making a computer
simulation based on the setup described in in [1] and in
Fig. 2 in [2]. The aim is to be able to reproduce the
results from [3] where the actual experiment took place.

2. The Langevin approach

2.1. Position of the problem

A ratchet potential is a flashing potential with an asym-
metric ’sawtooth’ shape. Initially the potential is 0, the
collection of particles is located at 0, and the particles start
to move randomly around due to their Brownian motion.
When the potential is present at some later time, the parti-
cles will move to the corresponding well at their location.
Because of the asymmetric shape of the potential, more
particles will go to one side rather than another, and the
group velocity of the ensemble is non-zero. The Langevin
approach to solve this problem (in 1D) involves solving the
equation of motion of the system. The system in this case
contains two spherical particles with radius {r1, r2} and
mass {m1,m2}. The equation of motion for the particles
in the medium can be found by Newton’s 2nd law, and is
given by:

mi
d2xi

dt2
= −∂U

∂x
(xi, t)− γi

dxi

dt
+ ξ(t) (1)

where i specify the particle, x is the position, t is time,
U is the flashing ratchet-potential, γi = 6πηri is the fric-
tion constant and ξ(t) is stochastic variable that takes into
account the collision with the solvent molecules. In the
Langevin approach, the stochastic variable ξ(t) can be as-
sumed to have a Gaussian probability distribution with

the properties

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = 2γikBTδ(t− t′)

where kB is Boltzmann’s constant and T is the tempera-
ture of the solvent.

Because the acceleration is small, and take place over a
small time scale compared to the time scale of interest, the

term mi
∂2x
∂t2 can be neglected and we get an overdamped

approximation. The equation of motion becomes

∂U

∂x
(xi, t) + γi

dxi

dt
= ξ(t) (2)

The ratchet potential can be written in the form

U(x, t) = Ur(x) f(t),

where Ur is the ’sawtooth’-potential with period L and f
is an asymmetric square signal with period τ to turn the
potential on and off. Ur is defined as

Ur(x) =


x

αL
∆U, 0 ≤ x < αL

L− x
L(1− α)

∆U, αL ≤ x < L

and f(t) is defined as

f(t) =


0, 0 ≤ t < 3τ

4

1,
3τ

4
≤ t < τ

2.2. Numerical Implementation

By using the Euler scheme, equation (2) has the fol-
lowing approximate solution:

xn+1 = xn −
1

γi

∂U

∂x
(xn, tn) δt+

√
2kbtT δt

γi
ξ̂n (3)
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where δt is the time step, tn = nδt is the time and xn is
the position at iteration n. ξ̂n is a random number drawn
from a normal distribution.

If the time step is too large, the particle might jump
through several variations of the potential within a single
iteration, and the simulation would give a wrong result. To
avoid this behaviour, the time step must be small enough
such that the change in position is (to a high probability)

within a region of constant force. Since |ξ̂| < 4 more than
99.99 % of the time and αL id the shortest length with
constant force (for α < 1/2) the change in position form
one time step to another should satisfy |xn+1 − xn| � αL.
Given this constraint and equation (3) gives

1

γi
max

∣∣∣∣∂U

∂x

∣∣∣∣ δt + 4

√
2kBTδt

γi
� αL (4)

In reduced units, equation (3) becomes

x̂n+1 = x̂n −
∂Û

∂x̂
(x̂n, t̂n)δt̂+

√
2D̂δt̂ ξ̂n (5)

where x̂ = x
L , t̂ = ωt, ω = ∆U

γiL2 , Û(x̂, t̂) = U(x,t)
∆U and

D̂ = kBT
∆U .

3. Result

3.1. Testing the code

For this simulation the physical parameters of the sys-
tem is set to be:

r1 = 12 nm,

L = 20 µm,

α = 0.2

η = 1 mPa s

kBT = 26 meV

∆U = 80 eV

as given in [1] to resemble the experimental setup from [3].
When the potential difference ∆U between Umin and

Umax is small compared to the thermal energy of the parti-
cles in the ensemble (∆U < kBT ) the particle is ’free’ and
moves around solely due to Brownian motion, unaffected
by the sawtooth potential. On the other hand, if the po-
tential different is large compared to the thermal energy
of the particle, (∆U > kBT), the particle is trapped in the
potential well. Figure 1 and 2 shows the trajectory of a
single particle with the potential present but no flashing.
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Figure 1: Single particle with ∆U = 0.1 kBT. The particle is
’free’.
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Figure 2: Single particle with ∆U = 10 kBT. The particle is
’trapped’.

In thermal equilibrium, the distribution of occupied
potential energies U is given by the Boltzmann distribution

p(U) =
exp

(
− U
kBT

)
kBT

(
1− exp

(
− U
kBT

)) (6)

where p is the probability density. Given eqn. (6), the
probability density of visited potential for the two cases
above is shown in figure 3 and 4.
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Figure 3: Probability density of visited potential with ∆U =
10 kBT. Reduced units are used.
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Figure 4: Probability density of visited potential with ∆U =
0.1 kBT. Reduced units are used.

If the potential is turned off, the distribution of parti-
cles after some time t should follow the diffusion model.
The solution to the diffusion equation in one dimension is

u(x, t) =
1√

4πDt
exp

(
− x2

4Dt

)
(7)

where u is the concentration of particles and D is the dif-
fusivity defined as D = kBT

γi
.

Figure 5 shows the actual distribution and the distri-
bution calculated using eqn. (7).
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Figure 5: The distribution of particles after 0.45 s. 10000
particles. Reduced units are used.

3.2. Reproducing experimental result

By introducing a second particle with larger radius,
r2 = 36 nm, the average drift velocity as a function of the
flashing period of the ratchet potential is calculated and is
shown in 6.
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Figure 6: Average drift velocity as a function of flashing perod
τ of the ratchet potential.

As seen in the figure above, different sized particles
have different average drift velocities when exposed to the
same ratchet potential. This would result in that differ-
ent sized particles would become separated. The optimal
flashing period τop (that results in highest average drift
velocity) is τop ≈ 0.5 s when r = 12 nm and τop ≈ 1.0 s

3



when r = 36 nm. The difference in average drift velocity is
greatest when the flashing period of the ratchet potential
is close to the optimal flashing period of the particles, and
the separation would therefor be faster and easier around
these optimal frequencies.

The flashing period of the potential is set to τ = 0.7 as
in [3]. The simulation was carried out with 1000 particles
(r = 12 nm) over a time period of 0, 10, and 20 cycles
of the flashing potential. The distribution of particles is
shown in figure 7, and the expected distribution from [3]
is shown in figure 8
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Figure 7: Particle distribution after 0, 10 and 20 cycles of the
flashing potential. τ = 0.7 s. 1000 particles.

Figure 8: Expected distribution from experiment [3] after 0,
10 and 20 cycles.

The simulated distribution closely resembles the shape
of the experimental results. When looking more closely at
the 20 cycle simulation, figure 9 shows some of the particle

trajectories.
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Figure 9: Particle trajectories. τ = 0.7 s. 8 out of 1000
particles are shown.

4. Conclusion

Dissolved particles of different size can be separated
using a flashing ratchet potential. This exercise has nu-
merically simulated the distribution of particles after be-
ing exposed to this kind of potential, as well as finding
the optimal flashing period for maximum average drift ve-
locity. The distribution of particles after they have been
exposed to the ratchet potential seems to reproduce the
results from the experiment done in [3].
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