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Abstract

I have simulated the motion of charged particles on an magnetic bottle and in the Earth magnetic field. In both cases
the particles bounce between the poles with a helix-like trajectory.

1. Introduction

Solar winds from the sun contains a lot of electrical
charged particles which are deflected by the Earth mag-
netic field. The particles will experience the Lorenz force
and move accordingly. This will result in the particles un-
dergoing a ’bouncing’ motion from pole to pole. A mag-
netic bottle made by two facing Helmholtz coils will set up
a similar magnetic field. The aim of this simulation is to
see how particles behave in the Earth magnetic field. This
could help to understand certain phenomena, like why the
aurora is only happening around the poles.

2. Drift of charged particles in a magnetic field

The force acting on an electrical charged particle with
mass m and charge q that moves in an electric field E
and a magnetic field is B is given by the Lorentz force
F = q (E + v ×B), which gives the equation of motion:

m
d2x

dt2
= q (E + v×B) (1)

2.1. Solving linear ODEs numerically

Linear ODEs are equations on the form

xn + an−1x
n−1 + an−2x

n−2 + . . .+ a1x+ a0 = 0 (2)

where xn is the n-th derivative of x:

xn :=
dnx(t)

dtn
(3)

The Lorentz equation (1) can be written

d2x̂

dt̂2
= E + v̂× B̂, (4)

where x̂ = x
rL

and t̂ = ωc t. ωc is called the cyclotron fre-

quency and is given by ωc = |q|B
m . rL is the Larmor radius

given by rL = v⊥/ωc, where v⊥ is the speed perpendicular
to the magnetic field.

Equation (4) can be rewritten in a more compact form
by defining a state vector X. Equation (4) then becomes

dX

dt̂
= f(X).

Set the state vector X = [~x, ~v]. By taking the deriva-
tive with respect to t, f(X) becomes

f(X) =

[
v

E + v̂× B̂

]
=


0
0
0
Ex
Ey
Ez

+


vx
vy
vz

vyBz − vzBy
vzBx − vxBz
vxBy − vyBx

 (5)

where B = B(x, t) and E = E(x, t) in general.

2.2. Helmholtz coils

Two Helmholtz coils are placed with center on the same
axis, here the (O, êz) axis with center at Z = −d and
z = d, such that they are facing each other. In cylindrical
coordinated the magnetic field produced by the coils can
be expressed in the form B = Br(r, z)êr + Bz(r, z)êz.
Using the Biot-Savart law, Br and Bz can be expressed as

B̂r(r̂, ẑ) =

(
1 + R̂2

)3/2
4πR̂∫ 2π

0

(ẑ − 1) cos θ(
(r̂ − R̂ cos θ)2 + R̂2 sin2 θ + (ẑ − 1)2

)3/2 dθ

+

∫ 2π

0

(ẑ + 1) cos θ(
(r̂ − R̂ cos θ)2 + R̂2 sin2 θ + (ẑ + 1)2

)3/2 dθ
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B̂z(r̂, ẑ) =

(
1 + R̂2

)3/2
4π∫ 2π

0

1− r̂
R̂

cos θ(
(r̂ − R̂ cos θ)2 + R̂2 sin2 θ + (ẑ − 1)2

)3/2 dθ

+

∫ 2π

0

1− r̂
R̂

cos θ(
(r̂ − R̂ cos θ)2 + R̂2 sin2 θ + (ẑ + 1)2

)3/2 dθ

Such a setup is called a magnetic bottle and are able
to trap a charged particle, i.e. a proton or an electron.

2.3. The Earth magnetic field

The Earth magnetic field can be modeled as a mag-
netic dipole and is best described in spherical coordinates.
The magnetic field can be expressed in the form B(x) =
Br(r, θ)êr +Bθ(r, θ)êθ. Br and Bθ is given by

Br = −2B0 cos θ
r3e
r3
, (6)

Bθ = −2 sin θ
r3e
r3
. (7)

where r =
√
x2 + y2 + z2, re is the Earth radius and B0 is

the magnetic field at equator. By introducing the reduced
parameters: r̂ = r/re, t̂ = ωt, x̂ = x/re, v̂ = v/c0, B̂ =
B/B0, ωe,p = eB0/me,p and αe,p = ωe,p/ω the equation of
motion becomes:

d2x̂

dt̂2
= αe,pv̂× B̂ (8)

2.4. Magnetic moment

The magnetic moment to the particle along the field
is given by µ = IS, where I is the current caused by the
charged particle moving in a loop during the time τc =
2π/ωc and S = πr2L is the area of the loop. This gives the
magnetic moment

µ = −|q|
τc
πr2L

= −sgn(q)πr2L
qωc
2π

= −sgn(q)
qv2⊥
3ωc

(9)

3. Results & Discussion

The ODE was solved numerically using the Runge-
Kutta 4 (RK4) method. The integrals in the magnetic field
for the Helmholtz coils was solved using existing methods
from the SciPy package [2].

3.1. Magnetic bottle

Figure 1 shows the trajectory of a proton trapped be-
tween two Helmholtz coils.
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Figure 1: Proton trajectory between two Helmholtz coils. ini-
tial conditions: x = (1, 0, 1), v0 = (1/

√
2, 0, 1/

√
2). Reduced

units are used.

The magnetic moment for the first few seconds is shown
in Figure 2.
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Figure 2: Magnetic moment and relative kinetic energy for
the first few seconds. Proton between two Helmholtz coils.

From Fig 2 it seems that the magnetic moment is fairly
conserved throughout the simulation. There also seems to
be some sort of oscillation, but i don’t know why this is
happening. The kinetic energy seems conserved.

3.2. The Earth magnetic field

Figure 3 shows the trajectory of a proton moving in
the Earth magnetic field.
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Figure 3: Proton trajectory moving in the Earth magnetic
field. The Earth is visualised to scale by the blue sphere. Initial
position ~x0 = (0, 4re, 0) and initial velocity ~v0 = 0.08c0√

2
(1, 0, 1).

The magnetic moment for the first few seconds is shown
in Figure 4.
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Figure 4: Magnetic moment and relative kinetic energy for
the first few seconds. Proton in the Earth magnetic field.

Similar as for the Helmholtz coils, the kinetic energy
is conserved. The magnetic moment also seems conserved,
but have some small oscillations.

4. Conclusion

This simulation shows that when solar winds hit Earth
with charged particles, the particles will ’bounce’ from pole
to pole and precess around the earth. The particles tends
to be closer to the origin (the center of Earth) when they
turn around at the poles, which explains why the Aurora
is more likely to happen in a circle around the magnetic
north and south pole.
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5. Appendix

The code was tested on several simpler electric and
magnetic fields as shown in the figures below.

Figure 5 and 6 shows the particle trajectory of a charged
particle in a constant electric and magnetic field calculated
using Euler, midpoint and RK4 scheme.

Trajectory, constant E and B

Figure 5

Figure 6

Figure 7 shows the numerical error as a function of step
size. Note that for step size smaller than around 10e− 3

the RK4 scheme does not give a more accurate result due
to the precision of the variables used.
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Figure 7: Numerical error using the different schemes.

Figure 8 shows the trajectory of a proton and an elec-
tron in a magnetic field with constant gradient linear in y;
B(y) = B0 + βy.
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Figure 8: Magnetic field with constant gradient. Both parti-
cles has initial position at the origin with initial velocity (1,0,0).
Using RK4 scheme.

Figure 9 shows a particle moving in a curved field ex-
pressed as B = Bêθ.
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Figure 9: Particle in a curved magnetic field. Using RK4
scheme.

All the particle trajectories looks reasonable.
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